82
views
0
recommends
+1 Recommend
1 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus

      , ,

      Endocrine Reviews

      Endocrine Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The steep rise of type 2 diabetes mellitus (T2DM) and associated complications go along with mounting evidence of clinically important sex and gender differences. T2DM is more frequently diagnosed at lower age and body mass index in men; however, the most prominent risk factor, which is obesity, is more common in women. Generally, large sex-ratio differences across countries are observed. Diversities in biology, culture, lifestyle, environment, and socioeconomic status impact differences between males and females in predisposition, development, and clinical presentation. Genetic effects and epigenetic mechanisms, nutritional factors and sedentary lifestyle affect risk and complications differently in both sexes. Furthermore, sex hormones have a great impact on energy metabolism, body composition, vascular function, and inflammatory responses. Thus, endocrine imbalances relate to unfavorable cardiometabolic traits, observable in women with androgen excess or men with hypogonadism. Both biological and psychosocial factors are responsible for sex and gender differences in diabetes risk and outcome. Overall, psychosocial stress appears to have greater impact on women rather than on men. In addition, women have greater increases of cardiovascular risk, myocardial infarction, and stroke mortality than men, compared with nondiabetic subjects. However, when dialysis therapy is initiated, mortality is comparable in both males and females. Diabetes appears to attenuate the protective effect of the female sex in the development of cardiac diseases and nephropathy. Endocrine and behavioral factors are involved in gender inequalities and affect the outcome. More research regarding sex-dimorphic pathophysiological mechanisms of T2DM and its complications could contribute to more personalized diabetes care in the future and would thus promote more awareness in terms of sex- and gender-specific risk factors.

          Related collections

          Most cited references 389

          • Record: found
          • Abstract: found
          • Article: not found

          Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013.

          In 2010, overweight and obesity were estimated to cause 3·4 million deaths, 3·9% of years of life lost, and 3·8% of disability-adjusted life-years (DALYs) worldwide. The rise in obesity has led to widespread calls for regular monitoring of changes in overweight and obesity prevalence in all populations. Comparable, up-to-date information about levels and trends is essential to quantify population health effects and to prompt decision makers to prioritise action. We estimate the global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013. We systematically identified surveys, reports, and published studies (n=1769) that included data for height and weight, both through physical measurements and self-reports. We used mixed effects linear regression to correct for bias in self-reports. We obtained data for prevalence of obesity and overweight by age, sex, country, and year (n=19,244) with a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs). Worldwide, the proportion of adults with a body-mass index (BMI) of 25 kg/m(2) or greater increased between 1980 and 2013 from 28·8% (95% UI 28·4-29·3) to 36·9% (36·3-37·4) in men, and from 29·8% (29·3-30·2) to 38·0% (37·5-38·5) in women. Prevalence has increased substantially in children and adolescents in developed countries; 23·8% (22·9-24·7) of boys and 22·6% (21·7-23·6) of girls were overweight or obese in 2013. The prevalence of overweight and obesity has also increased in children and adolescents in developing countries, from 8·1% (7·7-8·6) to 12·9% (12·3-13·5) in 2013 for boys and from 8·4% (8·1-8·8) to 13·4% (13·0-13·9) in girls. In adults, estimated prevalence of obesity exceeded 50% in men in Tonga and in women in Kuwait, Kiribati, Federated States of Micronesia, Libya, Qatar, Tonga, and Samoa. Since 2006, the increase in adult obesity in developed countries has slowed down. Because of the established health risks and substantial increases in prevalence, obesity has become a major global health challenge. Not only is obesity increasing, but no national success stories have been reported in the past 33 years. Urgent global action and leadership is needed to help countries to more effectively intervene. Bill & Melinda Gates Foundation. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis.

            By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diabetes and cardiovascular disease. The Framingham study.

              Based on 20 years of surveillance of the Framingham cohort relating subsequent cardiovascular events to prior evidence of diabetes, a twofold to threefold increased risk of clinical atherosclerotic disease was reported. The relative impact was greatest for intermittent claudication (IC) and congestive heart failure (CHF) and least for coronary heart disease (CHD), which was, nevertheless, on an absolute scale the chief sequela. The relative impact was substantially greater for women than for men. For each of the cardiovascular diseases (CVD), morbidity and mortality were higher for diabetic women than for nondiabetic men. After adjustment for other associated risk factors, the relative impact of diabetes on CHD, IC, or stroke incidence was the same for women as for men; for CVD death and CHF, it was greater for women. Cardiovascular mortality was actually about as great for diabetic women as for diabetic men.
                Bookmark

                Author and article information

                Journal
                Endocr Rev
                Endocr. Rev
                edrv
                endre
                edrv
                edrv
                Endocrine Reviews
                Endocrine Society (Washington, DC )
                0163-769X
                1945-7189
                June 2016
                9 May 2016
                9 May 2016
                : 37
                : 3
                : 278-316
                Affiliations
                Gender Medicine Unit (A.K.-W., J.H.), Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; and Metabolic Unit (G.P.), Institute of Neuroscience, National Research Council, 35127 Padua, Italy
                Author notes
                Address requests for reprints to: Professor Alexandra Kautzky-Willer, MD, Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria. E-mail: alexandra.kautzky-willer@ 123456meduniwien.ac.at .
                Article
                ER-15-1137
                10.1210/er.2015-1137
                4890267
                27159875

                This article is published under the terms of the Creative Commons Attribution-Non Commercial License (CC-BY-NC; http://creativecommons.org/licenses/by-nc/4.0/).

                Product
                Categories
                Reviews

                Comments

                Comment on this article