18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein Profiles for Muscle Development and Intramuscular Fat Accumulation at Different Post-Hatching Ages in Chickens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Muscle development and growth influences the efficiency of poultry meat production, and is closely related to deposition of intramuscular fat (IMF), which is crucial in meat quality. To clarify the molecular mechanisms underlying muscle development and IMF deposition in chickens, protein expression profiles were examined in the breast muscle of Beijing-You chickens at ages 1, 56, 98 and 140 days, using isobaric tags for relative and absolute quantification (iTRAQ). Two hundred and four of 494 proteins were expressed differentially. The expression profile at day 1 differed greatly from those at day 56, 98 and 140. KEGG pathway analysis of differential protein expression from pair-wise comparisons (day 1 vs. 56; 56 vs. 98; 98 vs. 140), showed that the fatty acid degradation pathway was more active during the stage from day 1 to 56 than at other periods. This was consistent with the change in IMF content, which was highest at day 1 and declined dramatically thereafter. When muscle growth was most rapid (days 56–98), pathways involved in muscle development were dominant, including hypertrophic cardiomyopathy, dilated cardiomyopathy, cardiac muscle contraction, tight junctions and focal adhesion. In contrast with hatchlings, the fatty acid degradation pathway was downregulated from day 98 to 140, which was consistent with the period for IMF deposition following rapid muscle growth. Changes in some key specific proteins, including fast skeletal muscle troponin T isoform, aldehyde dehydrogenase 1A1 and apolipoprotein A1, were verified by Western blotting, and could be potential biomarkers for IMF deposition in chickens. Protein–protein interaction networks showed that ribosome-related functional modules were clustered in all three stages. However, the functional module involved in the metabolic pathway was only clustered in the first stage (day 1 vs. 56). This study improves our understanding of the molecular mechanisms underlying muscle development and IMF deposition in chickens.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra.

          The Paragon Algorithm, a novel database search engine for the identification of peptides from tandem mass spectrometry data, is presented. Sequence Temperature Values are computed using a sequence tag algorithm, allowing the degree of implication by an MS/MS spectrum of each region of a database to be determined on a continuum. Counter to conventional approaches, features such as modifications, substitutions, and cleavage events are modeled with probabilities rather than by discrete user-controlled settings to consider or not consider a feature. The use of feature probabilities in conjunction with Sequence Temperature Values allows for a very large increase in the effective search space with only a very small increase in the actual number of hypotheses that must be scored. The algorithm has a new kind of user interface that removes the user expertise requirement, presenting control settings in the language of the laboratory that are translated to optimal algorithmic settings. To validate this new algorithm, a comparison with Mascot is presented for a series of analogous searches to explore the relative impact of increasing search space probed with Mascot by relaxing the tryptic digestion conformance requirements from trypsin to semitrypsin to no enzyme and with the Paragon Algorithm using its Rapid mode and Thorough mode with and without tryptic specificity. Although they performed similarly for small search space, dramatic differences were observed in large search space. With the Paragon Algorithm, hundreds of biological and artifact modifications, all possible substitutions, and all levels of conformance to the expected digestion pattern can be searched in a single search step, yet the typical cost in search time is only 2-5 times that of conventional small search space. Despite this large increase in effective search space, there is no drastic loss of discrimination that typically accompanies the exploration of large search space.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation.

            The Ezh2 protein endows the Polycomb PRC2 and PRC3 complexes with histone lysine methyltransferase (HKMT) activity that is associated with transcriptional repression. We report that Ezh2 expression was developmentally regulated in the myotome compartment of mouse somites and that its down-regulation coincided with activation of muscle gene expression and differentiation of satellite-cell-derived myoblasts. Increased Ezh2 expression inhibited muscle differentiation, and this property was conferred by its SET domain, required for the HKMT activity. In undifferentiated myoblasts, endogenous Ezh2 was associated with the transcriptional regulator YY1. Both Ezh2 and YY1 were detected, with the deacetylase HDAC1, at genomic regions of silent muscle-specific genes. Their presence correlated with methylation of K27 of histone H3. YY1 was required for Ezh2 binding because RNA interference of YY1 abrogated chromatin recruitment of Ezh2 and prevented H3-K27 methylation. Upon gene activation, Ezh2, HDAC1, and YY1 dissociated from muscle loci, H3-K27 became hypomethylated and MyoD and SRF were recruited to the chromatin. These findings suggest the existence of a two-step activation mechanism whereby removal of H3-K27 methylation, conferred by an active Ezh2-containing protein complex, followed by recruitment of positive transcriptional regulators at discrete genomic loci are required to promote muscle gene expression and cell differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans

              Mass spectrometry based methods for relative proteome quantification have broadly impacted life science research. However, important research directions, particularly those involving mathematical modeling and simulation of biological processes, also critically depend on absolutely quantitative data, i.e. knowledge of the concentration of the expressed proteins as a function of cellular state. Until now, absolute protein concentration measurements of a significant fraction of the proteome (73%) have only been derived from genetically altered S. cerevisiae cells 1, a technique that is not directly portable from yeast to other species. In this study we developed and applied a mass spectrometry based strategy to determine the absolute quantity i.e. the average number of protein copies per cell in a cell population, for a significant fraction of the proteome in genetically unperturbed cells. Applying the technology to the human pathogen Leptospira interrogans, a spirochete responsible for Leptospirosis 4, we generated an absolute protein abundance scale for 83% of the mass spectrometry detectable proteome, from cells at different states. Taking advantage of the unique cellular dimensions of L. interrogans, we used cryo electron tomography (cryoET) morphological measurements to verify at the single cell level the average absolute abundance values of selected proteins determined by mass spectrometry on a population of cells. As the strategy is relatively fast and applicable to any cell type we expect that it will become a cornerstone of quantitative biology and systems biology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                10 August 2016
                2016
                : 11
                : 8
                : e0159722
                Affiliations
                [001]Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
                Universitat de Lleida, SPAIN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Conceived and designed the experiments: RRL GPZ JWe.

                • Performed the experiments: RQF JL.

                • Analyzed the data: JWa MQZ.

                • Contributed reagents/materials/analysis tools: HXC QHL JS.

                • Wrote the paper: JL RQF.

                Article
                PONE-D-16-04447
                10.1371/journal.pone.0159722
                4980056
                27508388
                4e3d11e3-0b34-4132-abb6-4961a6fdde3c
                © 2016 Liu et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 February 2016
                : 10 June 2016
                Page count
                Figures: 6, Tables: 2, Pages: 19
                Funding
                Funded by: the National Natural Science Foundation of China
                Award ID: 31201797
                Award Recipient :
                Funded by: the Agricultural Science and Technology Innovation Program
                Award ID: ASTIP-IAS04
                Award Recipient :
                Funded by: the earmarked fund for modern agro-industry technology research system
                Award ID: CARS-42
                Award Recipient :
                The research was supported by grants: the National Natural Science Foundation of China (31201797); the Agricultural Science and Technology Innovation Program (ASTIP-IAS04); the earmarked fund for modern agro-industry technology research system (CARS-42). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Muscle Proteins
                Biology and Life Sciences
                Cell Biology
                Molecular Motors
                Motor Proteins
                Biology and Life Sciences
                Biochemistry
                Proteins
                Motor Proteins
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Gene Expression and Vector Techniques
                Protein Expression
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Gene Expression and Vector Techniques
                Protein Expression
                Biology and Life Sciences
                Anatomy
                Musculoskeletal System
                Muscles
                Skeletal Muscles
                Medicine and Health Sciences
                Anatomy
                Musculoskeletal System
                Muscles
                Skeletal Muscles
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Amniotes
                Birds
                Fowl
                Gamefowl
                Chickens
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Amniotes
                Birds
                Poultry
                Chickens
                Biology and Life Sciences
                Agriculture
                Livestock
                Poultry
                Chickens
                Biology and Life Sciences
                Biochemistry
                Proteins
                Cytoskeletal Proteins
                Biology and Life Sciences
                Developmental Biology
                Organism Development
                Organogenesis
                Muscle Development
                Biology and Life Sciences
                Biochemistry
                Proteins
                Cytoskeletal Proteins
                Troponin
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article