141
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.

          Related collections

          Most cited references 185

          • Record: found
          • Abstract: found
          • Article: not found

          A simple technique for quantitation of low levels of DNA damage in individual cells.

          Human lymphocytes were either exposed to X-irradiation (25 to 200 rads) or treated with H2O2 (9.1 to 291 microM) at 4 degrees C and the extent of DNA migration was measured using a single-cell microgel electrophoresis technique under alkaline conditions. Both agents induced a significant increase in DNA migration, beginning at the lowest dose evaluated. Migration patterns were relatively homogeneous among cells exposed to X-rays but heterogeneous among cells treated with H2O2. An analysis of repair kinetics following exposure to 200 rads X-rays was conducted with lymphocytes obtained from three individuals. The bulk of the DNA repair occurred within the first 15 min, while all of the repair was essentially complete by 120 min after exposure. However, some cells demonstrated no repair during this incubation period while other cells demonstrated DNA migration patterns indicative of more damage than that induced by the initial irradiation with X-rays. This technique appears to be sensitive and useful for detecting damage and repair in single cells.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia.

              Cardiovascular disease is the leading cause of mortality in uremic patients. In large cross-sectional studies of dialysis patients, traditional cardiovascular risk factors such as hypertension and hypercholesterolemia have been found to have low predictive power, while markers of inflammation and malnutrition are highly correlated with cardiovascular mortality. However, the pathophysiology of the disease process that links uremia, inflammation, and malnutrition with increased cardiovascular complications is not well understood. We hereby propose the hypothesis that increased oxidative stress and its sequalae is a major contributor to increased atherosclerosis and cardiovascular morbidity and mortality found in uremia. This hypothesis is based on studies that conclusively demonstrate an increased oxidative burden in uremic patients, before and particularly after renal replacement therapies, as evidenced by higher concentrations of multiple biomarkers of oxidative stress. This hypothesis also provides a framework to explain the link that activated phagocytes provide between oxidative stress and inflammation (from infectious and non-infections causes) and the synergistic role that malnutrition (as reflected by low concentrations of albumin and/or antioxidants) contributes to the increased burden of cardiovascular disease in uremia. We further propose that retained uremic solutes such as beta-2 microglobulin, advanced glycosylated end products (AGE), cysteine, and homocysteine, which are substrates for oxidative injury, further contribute to the pro-atherogenic milieu of uremia. Dialytic therapy, which acts to reduce the concentration of oxidized substrates, improves the redox balance. However, processes related to dialytic therapy, such as the prolonged use of catheters for vascular access and the use of bioincompatible dialysis membranes, can contribute to a pro-inflammatory and pro-oxidative state and thus to a pro-atherogenic state. Anti-oxidative therapeutic strategies for patients with uremia are in their very early stages; nonetheless, early studies demonstrate the potential for significant efficacy in reducing cardiovascular complications.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OXIMED
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2013
                24 August 2013
                : 2013
                Affiliations
                1Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
                2Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
                3Division of Neurology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
                4Division of Nephrology, Department of Medicine, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City 235, Taiwan
                5Graduate Institute of Clinical Medical, Taipei Medical University, Taipei 110, Taiwan
                6Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
                Author notes

                Academic Editor: Mu-Rong Chao

                Article
                10.1155/2013/301982
                3766569
                24058721
                Copyright © 2013 Chih-Chien Sung et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Funding
                Funded by: http://dx.doi.org/10.13039/501100001868 National Science Council Taiwan
                Award ID: NSC 101-2314-B-016-016
                Categories
                Review Article

                Molecular medicine

                Comments

                Comment on this article