35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A platform for brain-wide imaging and reconstruction of individual neurons

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The structure of axonal arbors controls how signals from individual neurons are routed within the mammalian brain. However, the arbors of very few long-range projection neurons have been reconstructed in their entirety, as axons with diameters as small as 100 nm arborize in target regions dispersed over many millimeters of tissue. We introduce a platform for high-resolution, three-dimensional fluorescence imaging of complete tissue volumes that enables the visualization and reconstruction of long-range axonal arbors. This platform relies on a high-speed two-photon microscope integrated with a tissue vibratome and a suite of computational tools for large-scale image data. We demonstrate the power of this approach by reconstructing the axonal arbors of multiple neurons in the motor cortex across a single mouse brain.

          DOI: http://dx.doi.org/10.7554/eLife.10566.001

          eLife digest

          Nerve cells or neurons transmit electrical impulses to each other over long distances. These signals travel through highly branching nerve fibers called axons, which are about one hundred times thinner than a human hair, and can extend across the entire brain. Tracing the axon of a neuron from start to end can help to explain how individual neurons and brain areas communicate signals over long distances.

          A mouse brain contains approximately 70 million neurons, and tracing the axons of many neurons within a brain is a challenging problem. Tackling this problem requires a method for imaging entire brains in high enough detail to unambiguously resolve and follow axons from individual neurons across the brain. Economo, Clack et al. now demonstrate such a method for three-dimensional imaging of tissue samples as large as the whole mouse brain.

          This system is fully automated and works by first imaging a layer of tissue near the exposed surface of a sample, and then cutting off a slice of tissue that corresponds to the volume that has been imaged. These steps then repeat until the entire sample has been imaged; this takes about a week for a whole mouse brain and produces about 30 terabytes of images.

          Economo, Clack et al.’s advance can uncover how neurons communicate over long distances with an unprecedented level of precision. The method can now be used to generate a comprehensive database of neurons and their long distance connections. Such a database would aid efforts to model the roles of neural circuits in the brain, and inform the design of experiments to study brain activity during particular behaviors.

          DOI: http://dx.doi.org/10.7554/eLife.10566.002

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          A mesoscale connectome of the mouse brain.

          Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction.

            We report a water-based optical clearing agent, SeeDB, which clears fixed brain samples in a few days without quenching many types of fluorescent dyes, including fluorescent proteins and lipophilic neuronal tracers. Our method maintained a constant sample volume during the clearing procedure, an important factor for keeping cellular morphology intact, and facilitated the quantitative reconstruction of neuronal circuits. Combined with two-photon microscopy and an optimized objective lens, we were able to image the mouse brain from the dorsal to the ventral side. We used SeeDB to describe the near-complete wiring diagram of sister mitral cells associated with a common glomerulus in the mouse olfactory bulb. We found the diversity of dendrite wiring patterns among sister mitral cells, and our results provide an anatomical basis for non-redundant odor coding by these neurons. Our simple and efficient method is useful for imaging intact morphological architecture at large scales in both the adult and developing brains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural networks of the mouse neocortex.

              Numerous studies have examined the neuronal inputs and outputs of many areas within the mammalian cerebral cortex, but how these areas are organized into neural networks that communicate across the entire cortex is unclear. Over 600 labeled neuronal pathways acquired from tracer injections placed across the entire mouse neocortex enabled us to generate a cortical connectivity atlas. A total of 240 intracortical connections were manually reconstructed within a common neuroanatomic framework, forming a cortico-cortical connectivity map that facilitates comparison of connections from different cortical targets. Connectivity matrices were generated to provide an overview of all intracortical connections and subnetwork clusterings. The connectivity matrices and cortical map revealed that the entire cortex is organized into four somatic sensorimotor, two medial, and two lateral subnetworks that display unique topologies and can interact through select cortical areas. Together, these data provide a resource that can be used to further investigate cortical networks and their corresponding functions. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                20 January 2016
                2016
                : 5
                : e10566
                Affiliations
                [1 ]Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, United States
                [2 ]deptLaboratory of Systems Neuroscience , National Institute of Mental Health , Bethesda, United States
                [3 ]Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
                [4]Howard Hughes Medical Institute, Harvard Medical School , United States
                [5]Howard Hughes Medical Institute, Harvard Medical School , United States
                Author notes
                [†]

                These authors contributed equally to this work.

                [‡]

                These authors also contributed equally to this work.

                Article
                10566
                10.7554/eLife.10566
                4739768
                26796534
                4e4722fb-c45e-4e30-8c0e-b72443617794

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 03 August 2015
                : 18 November 2015
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000011, Howard Hughes Medical Institute;
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Tools and Resources
                Neuroscience
                Custom metadata
                2.5
                High-resolution fluorescence imaging of the complete mouse brain enables many neurons to be efficiently visualized in their entirety, revealing all targets of neurons that project widely across the brain.

                Life sciences
                neuroanatomy,whole-brain imaging,axonal reconstruction,neuroinformatics,tissue clearing,mouse

                Comments

                Comment on this article