110
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytokines and atherosclerosis: a comprehensive review of studies in mice

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the past few years, inflammation has emerged as a major driving force of atherosclerotic lesion development. It is now well-established that from early lesion to vulnerable plaque formation, numerous cellular and molecular inflammatory components participate in the disease process. The most prominent cells that invade in evolving lesions are monocyte-derived macrophages and T-lymphocytes. Both cell types produce a wide array of soluble inflammatory mediators (cytokines, chemokines) which are critically important in the initiation and perpetuation of the disease. This review summarizes the currently available information from mouse studies on the contribution of a specified group of cytokines expressed in atherosclerotic lesions, viz. interleukins (IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12, IL-18, IL-20) and macrophage-associated cytokines [tumour necrosis factor-α (TNF-α); macrophage migration inhibitory factor (MIF); interferon-γ (IFN-γ); colony stimulating factors G-CSF,-M-CSF,-GM-CSF) to atherogenesis. Emphasis is put on the consistency of the effects of these cytokines, i.e. inasmuch an effect depends on the experimental approach applied (overexpression/deletion, strain, gender, dietary conditions, and disease stage). An important outcome of this survey is (i) that only for a few cytokines there is sufficient consistent data allowing classifying them as typically proatherogenic (IL-1, IL-12, IL-18, MIF, IFN-γ, TNF-α, and M-CSF) or antiatherogenic (IL-10) and (ii) that some cytokines (IL-4, IL-6 and GM-CSF) can exert pro- or anti-atherogenic effects depending on the experimental conditions. This knowledge can be used for improved early detection, prevention and treatment of atherosclerosis.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment.

          The cytokine macrophage migration inhibitory factor (MIF) plays a critical role in inflammatory diseases and atherogenesis. We identify the chemokine receptors CXCR2 and CXCR4 as functional receptors for MIF. MIF triggered G(alphai)- and integrin-dependent arrest and chemotaxis of monocytes and T cells, rapid integrin activation and calcium influx through CXCR2 or CXCR4. MIF competed with cognate ligands for CXCR4 and CXCR2 binding, and directly bound to CXCR2. CXCR2 and CD74 formed a receptor complex, and monocyte arrest elicited by MIF in inflamed or atherosclerotic arteries involved both CXCR2 and CD74. In vivo, Mif deficiency impaired monocyte adhesion to the arterial wall in atherosclerosis-prone mice, and MIF-induced leukocyte recruitment required Il8rb (which encodes Cxcr2). Blockade of Mif but not of canonical ligands of Cxcr2 or Cxcr4 in mice with advanced atherosclerosis led to plaque regression and reduced monocyte and T-cell content in plaques. By activating both CXCR2 and CXCR4, MIF displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis. Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colony-stimulating factor-1 in immunity and inflammation.

            Colony-stimulating factor-1 (CSF-1, also known as macrophage-CSF) is the primary regulator of the survival, proliferation, differentiation and function of mononuclear phagocytes. Studies that involve CSF-1-deficient mice demonstrate that there is a variable requirement for CSF-1 in the development of individual mononuclear phagocyte populations. However, these cells uniformly express the CSF-1 receptor, and their morphology, phagocytosis and responsiveness to infectious and non-infectious stimuli is regulated by CSF-1. CSF-1 plays important roles in innate immunity, cancer and inflammatory diseases, including systemic lupus erythematosus, arthritis, atherosclerosis and obesity. In several conditions, activation of macrophages involves a CSF-1 autocrine loop. In addition, secreted and cell-surface isoforms of CSF-1 can have differential effects in inflammation and immunity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The biology of interleukin-6.

                Bookmark

                Author and article information

                Journal
                Cardiovasc Res
                cvrese
                cardiovascres
                Cardiovascular Research
                Oxford University Press
                0008-6363
                1755-3245
                1 August 2008
                16 May 2008
                16 May 2008
                : 79
                : 3
                : 360-376
                Affiliations
                TNO-BioSciences, Gaubius-Laboratory, Department of Vascular and Metabolic Diseases, PO Box 2215, 2301 CE Leiden, The Netherlands
                Author notes
                [* ]Corresponding author. Tel: +31 71 518 1467; fax: +31 71 518 1901. E-mail address: robert.kleemann@ 123456tno.nl
                Article
                cvn120
                10.1093/cvr/cvn120
                2492729
                18487233
                4e47b99b-c27e-43b6-840a-dea57d5e9d20
                Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2008. For permissions please email: journals.permissions@oxfordjournals.org

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that the original authorship is properly and fully attributed; the Journal, Learned Society and Oxford University Press are attributed as the original place of publication with correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org.

                History
                : 29 January 2008
                : 13 April 2008
                : 5 May 2008
                Categories
                Reviews
                Editor's Choice
                Custom metadata
                Time for primary review: 19 days

                Cardiovascular Medicine
                interleukins,inflammation,macrophage,cytokines,atherosclerosis
                Cardiovascular Medicine
                interleukins, inflammation, macrophage, cytokines, atherosclerosis

                Comments

                Comment on this article