7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MACRONUTRIENT RATES AND MULTIFUNCTIONAL MICROORGANISMS IN A TROPICAL FLOODED RICE CROP Translated title: DOSES DE MACRONUTRIENTES E MICROORGANISMOS MULTIFUNCIONAIS NA CULTURA DO ARROZ IRRIGADO POR INUNDAÇÃO TROPICAL

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT Tropical flooded rice production systems require a high input of fertilizers and chemical defensive. The use of plant growth-promoting rhizobacteria (PGPR), a sustainable component of this system, can increase nutrient-use efficiency and lead to significant increases in the grain yield of tropical flooded rice crop. This study aimed to determine the effect of the microorganism BRM 32110 (Bacillus thuringiensis) in combination with nitrogen (N), phosphorus (P) and potassium (K) application rates on the physiological and agronomic performance of tropical flooded rice plants. Trials were performed in the 2016/2017 growing season in Formoso do Araguaia, a city in Tocantins state, Brazil. Three independent experiments (E1, E2, and E3) were performed in a randomized block design in a 4 x 2 factorial scheme with three replications. E1 comprised four N application rates (0, 40, 80 and 120 kg N ha-1) with and without the addition of BRM 32110, E2 comprised four P2O5 application rates (0, 40, 80 and 120 kg P2O5 ha-1) with or without BRM 32110, and E3 comprised four K2O application rates (0, 20, 40 and 60 kg K2O ha-1) with and without BRM 32110. In fertile soil, there were no interactions between the rhizobacterium BRM 32110 and the N, P or K application rates. BRM 32110 improved nutrient uptake and, on average, increased shoot dry matter by 8%, photosynthesis rate by 14% and grain yield by 11% in the flooded rice plants. Our results suggest that the use of multifunctional microorganisms is a good strategy for improving flooded rice grain yield sustainably.

          Translated abstract

          RESUMO Os sistemas tropicais de produção de arroz inundado requerem uma alta entrada de fertilizantes e defensivos químicos. O uso de rizobactérias promotoras de crescimento de plantas (RPCP), um componente sustentável desse sistema, pode aumentar a eficiência do uso de nutrientes e levar a aumentos significativos no rendimento de grãos das culturas tropicais de arroz inundado. Este estudo teve como objetivo determinar o efeito do microrganismo BRM 32110 (Bacillus thuringiensis) em combinação com doses aplicaas de nitrogênio (N), fósforo (P) e potássio (K) no desempenho fisiológico e agronômico de plantas de arroz inundadas no ambiente tropical. Os ensaios foram realizados na safra agrícola 2016/2017 em Formoso do Araguaia, cidade no estado do Tocantins, Brasil. Três experimentos independentes (E1, E2 e E3) foram realizados em delineamento de blocos ao acaso, em esquema fatorial 4 x 2, com três repetições. E1 compreendeu quatro doses aplicadas de N (0, 40, 80 e 120 kg N ha-1) com e sem a adição de BRM 32110, E2 compreendeu quatro doses aplicadas de P2O5 (0, 40, 80 e 120 kg de P2O5 ha-1) com ou sem BRM 32110, e E3 compreendeu quatro taxas de aplicação de K2O (0, 20, 40 e 60 kg K2O ha-1) com e sem BRM 32110. Em solo fértil, não houve interações entre a rizobacteria BRM 32110 e taxas aplicadas de N, P ou K. O BRM 32110 melhorou a captação de nutrientes e, em média, aumentou a matéria seca da parte aérea em 8%, a taxa de fotossíntese em 14% e a produtividade de grãos em 11% nas plantas de arroz inundadas. Nossos resultados sugerem que o uso de microrganismos multifuncionais é uma boa estratégia para melhorar o rendimento de grãos de arroz inundado de forma sustentável.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of action of plant growth promoting bacteria

            The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture.

              The increasing demand for a steady, healthy food supply requires an efficient control of the major pests and plant diseases. Current management practices are based largely on the application of synthetic pesticides. The excessive use of agrochemicals has caused serious environmental and health problems. Therefore, there is a growing demand for new and safer methods to replace or at least supplement the existing control strategies. Biological control, that is, the use of natural antagonists to combat pests or plant diseases has emerged as a promising alternative to chemical pesticides. The Bacilli offer a number of advantages for their application in agricultural biotechnology. Several Bacillus-based products have been marketed as microbial pesticides, fungicides or fertilisers. Bacillus-based biopesticides are widely used in conventional agriculture, by contrast, implementation of Bacillus-based biofungicides and biofertilizers is still a pending issue. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                rcaat
                Revista Caatinga
                Rev. Caatinga
                Universidade Federal Rural do Semi-Árido (Mossoró, RN, Brazil )
                0100-316X
                1983-2125
                October 2020
                : 33
                : 4
                : 898-907
                Affiliations
                [2] Santo Antônio de Goiás Goiás orgnameEmbrapa Arroz e Feijão orgdiv1Brazilian Agricultural Research Corporation Brazil adriano.nascente@ 123456embrapa.br
                Article
                S1983-21252020000400898 S1983-2125(20)03300400898
                10.1590/1983-21252020v33n404rc
                4e4f0453-38df-4518-bb44-42132a9f2cc0

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 30 January 2020
                : 23 July 2020
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 33, Pages: 10
                Product

                SciELO Brazil

                Self URI: Full text available only in PDF format (EN)
                Categories
                Agronomy

                Horticulture
                Oryza sativa,Sustainable development,Physiological and agronomic attributes,Bacillus sp.,Rhizobacteria,Desenvolvimento sustentável,Atributos fisiológicos e agronômicos,Rizobacteria

                Comments

                Comment on this article