1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Retinal counterion switch mechanism in vision evaluated by molecular simulations.

      Journal of the American Chemical Society
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photoisomerization of the retinylidene chromophore of rhodopsin is the starting point in the vision cascade. A counterion switch mechanism that stabilizes the retinal protonated Schiff base (PSB) has been proposed to be an essential step in rhodopsin activation. On the basis of vibrational and UV-visible spectroscopy, two counterion switch models have emerged. In the first model, the PSB is stabilized by Glu181 in the meta I state, while in the most recent proposal, it is stabilized by Glu113 as well as Glu181. We assess these models by conducting a pair of microsecond scale, all-atom molecular dynamics simulations of rhodopsin embedded in a 99-lipid bilayer of SDPC, SDPE, and cholesterol (2:2:1 ratio) varying the starting protonation state of Glu181. Theoretical simulations gave different orientations of retinal for the two counterion switch mechanisms, which were used to simulate experimental 2H NMR spectra for the C5, C9, and C13 methyl groups. Comparison of the simulated 2H NMR spectra with experimental data supports the complex-counterion mechanism. Hence, our results indicate that Glu113 and Glu181 stabilize the retinal PSB in the meta I state prior to activation of rhodopsin.

          Related collections

          Author and article information

          Journal
          17177390
          10.1021/ja0671971

          Comments

          Comment on this article

          scite_