15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered Middle Ear Microbiome in Children With Chronic Otitis Media With Effusion and Respiratory Illnesses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic otitis media with effusion (COME) is a common childhood disease characterized by an accumulation of fluid behind the eardrum. COME often requires surgical intervention and can also lead to significant hearing loss and subsequent learning disabilities. Recent characterization of the middle ear fluid (MEF) microbiome in pediatric patients has led to an improved understanding of the microbiota present in the middle ear during COME. However, it is not currently known how the MEF microbiome might vary due to other conditions, particularly respiratory disorders. Here, we apply an amplicon sequence variant (ASV) pipeline to MEF 16S rRNA high-throughput sequencing data from 50 children with COME (ages 3–176 months) undergoing tube placement. We achieve a more detailed taxonomic resolution than previously reported, including species and genus level resolution. Additionally, we provide the first report of the functional roles of the MEF microbiome and demonstrate that despite high taxonomic diversity, the functional capacity of the MEF microbiome remains uniform between patients. Furthermore, we analyze microbiome differences between children with COME with and without a history of lower airway disease (i.e., asthma or bronchiolitis). The MEF microbiome was less diverse in participants with lower airway disease than in patients without, and phylogenetic β-diversity (weighted UniFrac) was significantly different based on lower airway disease status. Differential abundance between patients with lower airway disease and those without was observed for the genera Haemophilus, Moraxella, Staphylococcus, Alloiococcus, and Turicella. These findings support previous suggestions of a link between COME and respiratory illnesses and emphasize the need for future study of the middle ear and respiratory tract microbiomes in diseases such as asthma and bronchiolitis.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution

          Abstract Targeted PCR amplification and high-throughput sequencing (amplicon sequencing) of 16S rRNA gene fragments is widely used to profile microbial communities. New long-read sequencing technologies can sequence the entire 16S rRNA gene, but higher error rates have limited their attractiveness when accuracy is important. Here we present a high-throughput amplicon sequencing methodology based on PacBio circular consensus sequencing and the DADA2 sample inference method that measures the full-length 16S rRNA gene with single-nucleotide resolution and a near-zero error rate. In two artificial communities of known composition, our method recovered the full complement of full-length 16S sequence variants from expected community members without residual errors. The measured abundances of intra-genomic sequence variants were in the integral ratios expected from the genuine allelic variants within a genome. The full-length 16S gene sequences recovered by our approach allowed Escherichia coli strains to be correctly classified to the O157:H7 and K12 sub-species clades. In human fecal samples, our method showed strong technical replication and was able to recover the full complement of 16S rRNA alleles in several E. coli strains. There are likely many applications beyond microbial profiling for which high-throughput amplicon sequencing of complete genes with single-nucleotide resolution will be of use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            EPA-ng: Massively Parallel Evolutionary Placement of Genetic Sequences

            Abstract Next generation sequencing (NGS) technologies have led to a ubiquity of molecular sequence data. This data avalanche is particularly challenging in metagenetics, which focuses on taxonomic identification of sequences obtained from diverse microbial environments. Phylogenetic placement methods determine how these sequences fit into an evolutionary context. Previous implementations of phylogenetic placement algorithms, such as the evolutionary placement algorithm (EPA) included in RAxML, or PPLACER, are being increasingly used for this purpose. However, due to the steady progress in NGS technologies, the current implementations face substantial scalability limitations. Herein, we present EPA-NG, a complete reimplementation of the EPA that is substantially faster, offers a distributed memory parallelization, and integrates concepts from both, RAxML-EPA and PPLACER. EPA-NG can be executed on standard shared memory, as well as on distributed memory systems (e.g., computing clusters). To demonstrate the scalability of EPA-NG, we placed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$1$\end{document} billion metagenetic reads from the Tara Oceans Project onto a reference tree with 3748 taxa in just under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$7$\end{document} h, using 2048 cores. Our performance assessment shows that EPA-NG outperforms RAxML-EPA and PPLACER by up to a factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$30$\end{document} in sequential execution mode, while attaining comparable parallel efficiency on shared memory systems. We further show that the distributed memory parallelization of EPA-NG scales well up to 2048 cores. EPA-NG is available under the AGPLv3 license: https://github.com/Pbdas/epa-ng .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient comparative phylogenetics on large trees

              Biodiversity databases now comprise hundreds of thousands of sequences and trait records. For example, the Open Tree of Life includes over 1 491 000 metazoan and over 300 000 bacterial taxa. These data provide unique opportunities for analysis of phylogenetic trait distribution and reconstruction of ancestral biodiversity. However, existing tools for comparative phylogenetics scale poorly to such large trees, to the point of being almost unusable.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                04 October 2019
                2019
                : 9
                : 339
                Affiliations
                [1] 1Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, Computational Biology Institute, The George Washington University , Washington, DC, United States
                [2] 2Facultad de Ciencias de la Vida, Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello , Santiago, Chile
                [3] 3Division of Pediatric Otolaryngology, Sheikh Zayed Institute, Children's National Health System , Washington, DC, United States
                [4] 4CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade Do Porto , Vairão, Portugal
                Author notes

                Edited by: Regie Santos-Cortez, University of Colorado Denver School of Medicine, United States

                Reviewed by: W. Edward Swords, University of Alabama at Birmingham, United States; Shujiro Minami, Tokyo Medical Center (NHO), Japan; Rebecca E. Walker, The University of Auckland, New Zealand

                *Correspondence: Allison R. Kolbe akolbe@ 123456gwu.edu

                This article was submitted to Microbiome in Health and Disease, a section of the journal Frontiers in Cellular and Infection Microbiology

                Article
                10.3389/fcimb.2019.00339
                6787523
                31637220
                4e8118ab-0262-4ae1-820c-dae6363beddf
                Copyright © 2019 Kolbe, Castro-Nallar, Preciado and Pérez-Losada.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 July 2019
                : 18 September 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 79, Pages: 10, Words: 7223
                Categories
                Cellular and Infection Microbiology
                Original Research

                Infectious disease & Microbiology
                otitis media,asthma,bronchiolitis,middle ear microbiome,amplicon sequence variants

                Comments

                Comment on this article