Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Surveillance of catheter-related infections: the supplementary role of the microbiology laboratory

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      BackgroundThe burden of catheter-related infections (CRIs) in developing countries is severe. In South Africa, a standardised surveillance definition does not exist and the collection of catheter days is challenging. The aim of the study was to provide baseline data on the prevalence of CRIs and to describe the epidemiology of CRI events within a tertiary academic hospital.MethodsSurveillance was laboratory-based and conducted for a six month period. A microbiologically confirmed CRBSI (MC-CRBSI) event was defined as the isolation of the same microorganism from the catheter and concomitant blood cultures (BCs), within 48 h of catheter removal, which were not related to an infection at another site.ResultsA total of 508 catheters, removed from 332 patients, were processed by the laboratory, of which only 50% (253/508 removed from 143/332 patients) of the catheters were accompanied by BCs within 48 h. Sixty-five episodes of MC-CRBSI in 57 patients were detected, involving 71 catheters and 195 microbial isolates. The institutional prevalence rate was 3.7 episodes per 1 000 admissions and 5.8 episodes per 10 000 in-patient days. Catheter day data was collected in only six wards of the hospital. The pooled laboratory incidence was 10.1 MC-CRBSI episodes per 1 000 catheter days, whereas the hospital-based central line-associated bloodstream infection (CLABSI) rate was pooled at 5.7 episodes per 1 000 catheter days. The majority of patients had an underlying gastro-intestinal condition (33%; 19/56) with a non-tunnelled, triple-lumen central venous catheter, placed in the subclavian vein (38%; 27/71). The most predominant pathogen was methicillin-resistant Staphylococcus epidermidis (28%; 55/195), followed by extensively-drug resistant Acinetobacter baumannii (18%; 35/195).ConclusionsCatheter-related infection prevention and control efforts require urgent attention, not only to keep patients safe from preventable harm, but to prevent the spread of multidrug resistant microorganisms.

      Related collections

      Most cited references 33

      • Record: found
      • Abstract: found
      • Article: not found

      Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

      Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided. © 2011 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America.

          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010.

          To describe antimicrobial resistance patterns for healthcare-associated infections (HAIs) reported to the National Healthcare Safety Network (NHSN) during 2009-2010. Central line-associated bloodstream infections, catheter-associated urinary tract infections, ventilator-associated pneumonia, and surgical site infections were included. Pooled mean proportions of isolates interpreted as resistant (or, in some cases, nonsusceptible) to selected antimicrobial agents were calculated by type of HAI and compared to historical data. Overall, 2,039 hospitals reported 1 or more HAIs; 1,749 (86%) were general acute care hospitals, and 1,143 (56%) had fewer than 200 beds. There were 69,475 HAIs and 81,139 pathogens reported. Eight pathogen groups accounted for about 80% of reported pathogens: Staphylococcus aureus (16%), Enterococcus spp. (14%), Escherichia coli (12%), coagulase-negative staphylococci (11%), Candida spp. (9%), Klebsiella pneumoniae (and Klebsiella oxytoca; 8%), Pseudomonas aeruginosa (8%), and Enterobacter spp. (5%). The percentage of resistance was similar to that reported in the previous 2-year period, with a slight decrease in the percentage of S. aureus resistant to oxacillins (MRSA). Nearly 20% of pathogens reported from all HAIs were the following multidrug-resistant phenotypes: MRSA (8.5%); vancomycin-resistant Enterococcus (3%); extended-spectrum cephalosporin-resistant K. pneumoniae and K. oxytoca (2%), E. coli (2%), and Enterobacter spp. (2%); and carbapenem-resistant P. aeruginosa (2%), K. pneumoniae/oxytoca (<1%), E. coli (<1%), and Enterobacter spp. (<1%). Among facilities reporting HAIs with 1 of the above gram-negative bacteria, 20%-40% reported at least 1 with the resistant phenotype. While the proportion of resistant isolates did not substantially change from that in the previous 2 years, multidrug-resistant gram-negative phenotypes were reported from a moderate proportion of facilities.
            Bookmark

            Author and article information

            Affiliations
            [ ]Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
            [ ]National Health Laboratory Service, Tshwane Academic Division, Pretoria, South Africa
            [ ]Department of Internal Medicine, University of Pretoria, Pretoria, South Africa
            [ ]Centre for Tuberculosis, National Institute of Communicable Diseases, Johannesburg, South Africa
            Contributors
            wilkestrasheim@gmail.com
            marleen.kock@up.ac.za
            ueckermannv@live.com
            ebbsterus@yahoo.com
            aw.dreyer@gmail.com
            marthie.ehlers@up.ac.za
            Journal
            BMC Infect Dis
            BMC Infect. Dis
            BMC Infectious Diseases
            BioMed Central (London )
            1471-2334
            8 January 2015
            8 January 2015
            2015
            : 15
            : 1
            25566999
            4297450
            743
            10.1186/s12879-014-0743-5
            © Strasheim et al.; licensee BioMed Central. 2015

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

            Categories
            Research Article
            Custom metadata
            © The Author(s) 2015

            Comments

            Comment on this article