8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Neurodevelopmental Perspective of Surgical Necrotizing Enterocolitis: The Role of the Gut-Brain Axis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This state-of-the-art review article aims to highlight the most recent evidence about the therapeutic options of surgical necrotizing enterocolitis, focusing on the molecular basis of the gut-brain axis in relevance to the neurodevelopmental outcomes of primary peritoneal drainage and primary laparotomy. Current evidence favors primary laparotomy over primary peritoneal drainage as regards neurodevelopment in the surgical treatment of necrotizing enterocolitis. The added exposure to inhalational anesthesia in infants undergoing primary laparotomy is an additional confounding variable but requires further study. The concept of the gut-brain axis suggests that bowel injury initiates systemic inflammation potentially affecting the developing central nervous system. Signals about microbes in the gut are transduced to the brain and the limbic system via the enteric nervous system, autonomic nervous system, and hypothalamic-pituitary axis. Preterm infants with necrotizing enterocolitis have significant differences in the diversity of the microbiome compared with preterm controls. The gut bacterial flora changes remarkably prior to the onset of necrotizing enterocolitis with a predominance of pathogenic organisms. The type of initial surgical approach correlates with the length of functional gut and microbiome equilibrium influencing brain development and function through the gut-brain axis. Existing data favor patients who were treated with primary laparotomy over those who underwent primary peritoneal drainage in terms of neurodevelopmental outcomes. We propose that this is due to the sustained injurious effect of the remaining diseased and necrotic bowel on the developing newborn brain, in patients treated with primary peritoneal drainage, through the gut-brain axis and probably not due to the procedure itself.

          Related collections

          Most cited references 61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fecal Microbiota in Premature Infants Prior to Necrotizing Enterocolitis

          Intestinal luminal microbiota likely contribute to the etiology of necrotizing enterocolitis (NEC), a common disease in preterm infants. Microbiota development, a cascade of initial colonization events leading to the establishment of a diverse commensal microbiota, can now be studied in preterm infants using powerful molecular tools. Starting with the first stool and continuing until discharge, weekly stool specimens were collected prospectively from infants with gestational ages ≤32 completed weeks or birth weights≤1250 g. High throughput 16S rRNA sequencing was used to compare the diversity of microbiota and the prevalence of specific bacterial signatures in nine NEC infants and in nine matched controls. After removal of short and low quality reads we retained a total of 110,021 sequences. Microbiota composition differed in the matched samples collected 1 week but not <72 hours prior to NEC diagnosis. We detected a bloom (34% increase) of Proteobacteria and a decrease (32%) in Firmicutes in NEC cases between the 1 week and <72 hour samples. No significant change was identified in the controls. At both time points, molecular signatures were identified that were increased in NEC cases. One of the bacterial signatures detected more frequently in NEC cases (p<0.01) matched closest to γ-Proteobacteria. Although this sequence grouped to the well-studied Enterobacteriaceae family, it did not match any sequence in Genbank by more than 97%. Our observations suggest that abnormal patterns of microbiota and potentially a novel pathogen contribute to the etiology of NEC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How tolerogenic dendritic cells induce regulatory T cells.

            Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing, and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurrence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self- and nonself-antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immunosuppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain-gut interactions in inflammatory bowel disease.

              Psycho-neuro-endocrine-immune modulation through the brain-gut axis likely has a key role in the pathogenesis of inflammatory bowel disease (IBD). The brain-gut axis involves interactions among the neural components, including (1) the autonomic nervous system, (2) the central nervous system, (3) the stress system (hypothalamic-pituitary-adrenal axis), (4) the (gastrointestinal) corticotropin-releasing factor system, and (5) the intestinal response (including the intestinal barrier, the luminal microbiota, and the intestinal immune response). Animal models suggest that the cholinergic anti-inflammatory pathway through an anti-tumor necrosis factor effect of the efferent vagus nerve could be a therapeutic target in IBD through a pharmacologic, nutritional, or neurostimulation approach. In addition, the psychophysiological vulnerability of patients with IBD, secondary to the potential presence of any mood disorders, distress, increased perceived stress, or maladaptive coping strategies, underscores the psychological needs of patients with IBD. Clinicians need to address these issues with patients because there is emerging evidence that stress or other negative psychological attributes may have an effect on the disease course. Future research may include exploration of markers of brain-gut interactions, including serum/salivary cortisol (as a marker of the hypothalamic-pituitary-adrenal axis), heart rate variability (as a marker of the sympathovagal balance), or brain imaging studies. The widespread use and potential impact of complementary and alternative medicine and the positive response to placebo (in clinical trials) is further evidence that exploring other psycho-interventions may be important therapeutic adjuncts to the conventional therapeutic approach in IBD. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi
                0962-9351
                1466-1861
                2018
                11 March 2018
                : 2018
                Affiliations
                1Department of Pediatrics, Flushing Hospital Medical Center, SUNY-Stonybrook School of Medicine, Flushing, NY, USA
                2Division of Neonatology and Center for Research in Neuroscience, Children's National Medical Center, George Washington University School of Medicine, Washington, DC, USA
                3Department of Emergency Medicine, Children's National Medical Center, George Washington University School of Medicine, Washington, DC, USA
                4Division of Pediatric Surgery, Palmetto Health Children's Hospital, University of South Carolina School of Medicine, Columbia, SC, USA
                5St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
                Author notes

                Academic Editor: Mirella Giovarelli

                Article
                10.1155/2018/7456857
                5866871
                4eafbe31-39fc-4208-a214-e3108b52e99a
                Copyright © 2018 Chariton Moschopoulos et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review Article

                Immunology

                Comments

                Comment on this article