17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stress, Motivation, and the Gut-Brain Axis: A Focus on the Ghrelin System and Alcohol Use Disorder

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Since its discovery, the gut hormone ghrelin has been implicated in diverse functional roles in the central nervous system. Central and peripheral interactions between ghrelin and other hormones, including the stress-response hormone cortisol, govern complex behavioral responses to external cues and internal states. By acting at ventral tegmental area dopaminergic projections and other areas involved in reward processing, ghrelin can induce both general and directed motivation for rewards, including craving for alcohol and other alcohol-seeking behaviors. Stress-induced increases in cortisol seem to increase ghrelin in the periphery, suggesting a pathway by which ghrelin influences how stressful life events trigger motivation for rewards. However, in some states, ghrelin may be protective against the anxiogenic effects of stressors. This critical review brings together a dynamic and growing literature, that is at times inconsistent, on the relationships between ghrelin, central reward-motivation pathways and central and peripheral stress responses, with a special focus on its emerging role in the context of alcohol use disorder. </p>

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological stress in ecology: lessons from biomedical research.

          Increasingly, levels of the 'stress hormones' cortisol and corticosterone are being used by ecologists as indicators of physiological stress in wild vertebrates. The amplitude of hormonal response is assumed to correlate with the overall health of an animal and, by extension, the health of the population. However, much of what is known about the physiology of stress has been elucidated by the biomedical research community. I summarize five physiological mechanisms that regulate hormone release during stress that should be useful to ecologists and conservationists. Incorporating these physiological mechanisms into the design and interpretation of ecological studies will make these increasingly popular studies of stress in ecological settings more rigorous.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex.

            Anatomical and functional refinements of the meso-limbic dopamine system of the rat are discussed. Present experiments suggest that dopaminergic neurons localized in the posteromedial ventral tegmental area (VTA) and central linear nucleus raphe selectively project to the ventromedial striatum (medial olfactory tubercle and medial nucleus accumbens shell), whereas the anteromedial VTA has few if any projections to the ventral striatum, and the lateral VTA largely projects to the ventrolateral striatum (accumbens core, lateral shell and lateral tubercle). These findings complement the recent behavioral findings that cocaine and amphetamine are more rewarding when administered into the ventromedial striatum than into the ventrolateral striatum. Drugs such as nicotine and opiates are more rewarding when administered into the posterior VTA or the central linear nucleus than into the anterior VTA. A review of the literature suggests that (1) the midbrain has corresponding zones for the accumbens core and medial shell; (2) the striatal portion of the olfactory tubercle is a ventral extension of the nucleus accumbens shell; and (3) a model of two dopamine projection systems from the ventral midbrain to the ventral striatum is useful for understanding reward function. The medial projection system is important in the regulation of arousal characterized by affect and drive and plays a different role in goal-directed learning than the lateral projection system, as described in the variation-selection hypothesis of striatal functional organization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endocrinology of the stress response.

              The stress response is subserved by the stress system, which is located both in the central nervous system and the periphery. The principal effectors of the stress system include corticotropin-releasing hormone (CRH); arginine vasopressin; the proopiomelanocortin-derived peptides alpha-melanocyte-stimulating hormone and beta-endorphin, the glucocorticoids; and the catecholamines norepinephrine and epinephrine. Appropriate responsiveness of the stress system to stressors is a crucial prerequisite for a sense of well-being, adequate performance of tasks, and positive social interactions. By contrast, inappropriate responsiveness of the stress system may impair growth and development and may account for a number of endocrine, metabolic, autoimmune, and psychiatric disorders. The development and severity of these conditions primarily depend on the genetic vulnerability of the individual, the exposure to adverse environmental factors, and the timing of the stressful events, given that prenatal life, infancy, childhood, and adolescence are critical periods characterized by increased vulnerability to stressors.
                Bookmark

                Author and article information

                Journal
                Alcoholism: Clinical and Experimental Research
                Alcohol Clin Exp Res
                Wiley
                01456008
                August 2018
                August 2018
                June 13 2018
                : 42
                : 8
                : 1378-1389
                Affiliations
                [1 ]Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge United Kingdom
                [2 ]Department of Psychology; University of Cambridge; Cambridge United Kingdom
                [3 ]Mood and Anxiety Disorders Program; Department of Psychiatry; Icahn School of Medicine at Mount Sinai; New York New York
                [4 ]Department of Psychiatry; University of Cambridge; Cambridge United Kingdom
                [5 ]Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology; National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health; Bethesda Maryland
                [6 ]Department of Behavioral and Social Sciences; Center for Alcohol and Addiction Studies; Brown University; Providence Rhode Island
                Article
                10.1111/acer.13781
                6252147
                29797564
                4ebb518d-7d62-4c96-85a8-87edfe3ed293
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article