7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Targeted heat activation of HSP promoters in the skin of mammalian animals and humans

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="Par1">The use of highly inducible HSP promoters for exerting spatial and/or temporal control over the expression of therapeutic transgenes has long been discussed. Localized and time-limited induction of the heat shock response may potentially also be of medical interest. However, such applications would require targeted delivery of heat doses capable of activating HSP promoters in tissues or organs of interest. Accessible areas, including the skin and tissues immediately underneath it, may be most readily targeted. A few applications for heat-directed or heat-controlled therapy in the skin might involve expression of proteins to restore or protect normal skin function, protein antigens for vaccination/immunotherapy, vaccine viruses or even systemically active proteins, e.g., cytokines and chemokines. A review of the literature relating to localized heat activation of HSP promoters and HSP genes in the skin revealed that a multitude of different technologies has been explored in small animal models. In contrast, we uncovered few publications that examine HSP promoter activation in human skin. None of these publications has a therapeutic focus. We present herein two, clinically relevant, developments of heating technologies that effectively activate HSP promoters in targeted regions of human skin. The first development advances a system that is capable of reliably activating HSP promoters in human scalp, in particular in hair follicles. The second development outlines a simple, robust, and inexpensive methodology for locally activating HSP promoters in small, defined skin areas. </p>

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia.

          This paper is one of several in this Special Issue of the International Journal of Hyperthermia that discusses the current state of knowledge about the human health risks of hyperthermia. This special issue emanated from a workshop sponsored by the World Health Organization in the Spring of 2002 on this topic. It is anticipated that these papers will help to establish guidelines for human exposure to conditions leading to hyperthermia. This comprehensive review of the literature makes it clear that much more work needs to be done to clarify what the thresholds for thermal damage are in humans. This review summarizes the basic principles that govern the relationships between thermal exposure (temperature and time of exposure) and thermal damage, with an emphasis on normal tissue effects. Methods for converting one time-temperature combination to a time at a standardized temperature are provided as well as a detailed discussion about the underlying assumptions that go into these calculations. There are few in vivo papers examining the type and extent of damage that occurs in the lower temperature range for hyperthermic exposures (e.g. 39-42 degrees C). Therefore, it is clear that estimation of thermal dose to effect at these thermal exposures is less precise in that temperature range. In addition, there are virtually no data that directly relate to the thermal sensitivity of human tissues. Thus, establishment of guidelines for human exposure based on the data provided must be done with significant caution. There is detailed review and presentation of thermal thresholds for tissue damage (based on what is detectable in vivo). The data are normalized using thermal dosimetric concepts. Tables are included in an Appendix Database which compile published data for thresholds of thermal damage in a variety of tissues and species. This database is available by request (contact MWD or PJH), but not included in this manuscript for brevity. All of the studies reported are for single acute thermal exposures. Except for brain function and physiology (as detailed in this issue by Sharma et al) one notes the critical lack of publications examining effects of chronic thermal exposures as might be encountered in occupational hazards. This review also does not include information on the embryo, which is covered in detail elsewhere in this volume (see article by Edwards et al.) as well as in a recent review on this subject, which focuses on thermal dose.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments

            The development of new and improved photothermal contrast agents for the successful treatment of cancer (or other diseases) via plasmonic photothermal therapy (PPTT) is a crucial part of the application of nanotechnology in medicine. Gold nanorods (AuNRs) have been found to be the most effective photothermal contrast agents, both in vitro and in vivo. Therefore, determining the optimum AuNR size needed for applications in PPTT is of great interest. In the present work, we utilized theoretical calculations as well as experimental techniques in vitro to determine this optimum AuNR size by comparing plasmonic properties and the efficacy as photothermal contrast agents of three different sizes of AuNRs. Our theoretical calculations showed that the contribution of absorbance to the total extinction, the electric field, and the distance at which this field extends away from the nanoparticle surface all govern the effectiveness of the amount of heat these particles generate upon NIR laser irradiation. Comparing between three different AuNRs (38 × 11, 28 × 8, and 17 × 5 nm), we determined that the 28 × 8 nm AuNR is the most effective in plasmonic photothermal heat generation. These results encouraged us to carry out in vitro experiments to compare the PPTT efficacy of the different sized AuNRs. The 28 × 8 nm AuNR was found to be the most effective photothermal contrast agent for PPTT of human oral squamous cell carcinoma. This size AuNR has the best compromise between the total amount of light absorbed and the fraction of which is converted to heat. In addition, the distance at which the electric field extends from the particle surface is most ideal for this size AuNR, as it is sufficient to allow for coupling between the fields of adjacent particles in solution (i.e., particle aggregates), resulting in effective heating in solution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Skin responses to fractional photothermolysis.

              Fractional photothermolysis (FP) is a new concept using arrays of microscopic thermal damage patterns to stimulate a therapeutic response. We analyzed epidermal and dermal response to FP with the aim of correlating histological and clinical response. Twelve subjects received a single treatment with a prototype diode laser emitting at a wavelength of 1,500 nm, delivering 5 mJ per microscopic treatment zone (MTZ), and a density of 1,600 MTZs/cm(2) on the forearm. Biopsies were procured over a period of 3 months. The biopsies were analyzed by two blinded dermatopathologists using hematoxylin and eosin (Hematoxylin and Eosin Stain), Elastica von Gieson, nitro-blue-tetrazolium-chloride (NBTC) viability, and immunohistochemistry stains. Furthermore, the treatment sites were evaluated in vivo by confocal microscopy. Twenty-four hours after fractional photothermolysis, the continuity of the epidermal basal cell layer is restored. Complete epidermal regeneration is obtained 7 days after the treatment. Microscopic epidermal necrotic debris (MENDs) are seen as early as 1 day after FP. MENDs contain melanin pigment, and are shed from the epidermis within 7 days. Evidence of increased collagen III production is shown with immunohistochemistry (IHC) staining 7 days after FP. IHC for heat shock protein 70 (HSP 70) shows the expression of HSP 1 day after FP, and IHC for alpha smooth muscle actin shows the presence of myofibroblasts 7 days after FP. These findings are concordant with the induction of a wound healing response by FP. There is no evidence of residual dermal fibrosis 3 months after treatment. A single treatment with fractional photothermolysis induces a wound healing response in the dermis. A mechanism for the precise removal of epidermal melanin is described, in which MENDs act as a melanin shuttle. Copyright 2005 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Cell Stress and Chaperones
                Cell Stress and Chaperones
                Springer Nature America, Inc
                1355-8145
                1466-1268
                July 2018
                February 7 2018
                July 2018
                : 23
                : 4
                : 455-466
                Article
                10.1007/s12192-018-0875-4
                6045553
                29417383
                4ebba828-198c-4312-acf5-5a5346a30263
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article