33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long QT Syndrome: An Emerging Role for Inflammation and Immunity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The long QT syndrome (LQTS), classified as congenital or acquired, is a multi-factorial disorder of myocardial repolarization predisposing to life-threatening ventricular arrhythmias, particularly torsades de pointes. In the latest years, inflammation and immunity have been increasingly recognized as novel factors crucially involved in modulating ventricular repolarization. In the present paper, we critically review the available information on this topic, also analyzing putative mechanisms and potential interplays with the other etiologic factors, either acquired or inherited. Accumulating data indicate inflammatory activation as a potential cause of acquired LQTS. The putative underlying mechanisms are complex but essentially cytokine-mediated, including both direct actions on cardiomyocyte ion channels expression and function, and indirect effects resulting from an increased central nervous system sympathetic drive on the heart. Autoimmunity represents another recently arising cause of acquired LQTS. Indeed, increasing evidence demonstrates that autoantibodies may affect myocardial electric properties by directly cross-reacting with the cardiomyocyte and interfering with specific ion currents as a result of molecular mimicry mechanisms. Intriguingly, recent data suggest that inflammation and immunity may be also involved in modulating the clinical expression of congenital forms of LQTS, possibly triggering or enhancing electrical instability in patients who already are genetically predisposed to arrhythmias. In this view, targeting immuno-inflammatory pathways may in the future represent an attractive therapeutic approach in a number of LQTS patients, thus opening new exciting avenues in antiarrhythmic therapy.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: not found

          The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system.

          The brain and the immune system are the two major adaptive systems of the body. During an immune response the brain and the immune system "talk to each other" and this process is essential for maintaining homeostasis. Two major pathway systems are involved in this cross-talk: the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). This overview focuses on the role of SNS in neuroimmune interactions, an area that has received much less attention than the role of HPA axis. Evidence accumulated over the last 20 years suggests that norepinephrine (NE) fulfills the criteria for neurotransmitter/neuromodulator in lymphoid organs. Thus, primary and secondary lymphoid organs receive extensive sympathetic/noradrenergic innervation. Under stimulation, NE is released from the sympathetic nerve terminals in these organs, and the target immune cells express adrenoreceptors. Through stimulation of these receptors, locally released NE, or circulating catecholamines such as epinephrine, affect lymphocyte traffic, circulation, and proliferation, and modulate cytokine production and the functional activity of different lymphoid cells. Although there exists substantial sympathetic innervation in the bone marrow, and particularly in the thymus and mucosal tissues, our knowledge about the effect of the sympathetic neural input on hematopoiesis, thymocyte development, and mucosal immunity is extremely modest. In addition, recent evidence is discussed that NE and epinephrine, through stimulation of the beta(2)-adrenoreceptor-cAMP-protein kinase A pathway, inhibit the production of type 1/proinflammatory cytokines, such as interleukin (IL-12), tumor necrosis factor-alpha, and interferon-gamma by antigen-presenting cells and T helper (Th) 1 cells, whereas they stimulate the production of type 2/anti-inflammatory cytokines such as IL-10 and transforming growth factor-beta. Through this mechanism, systemically, endogenous catecholamines may cause a selective suppression of Th1 responses and cellular immunity, and a Th2 shift toward dominance of humoral immunity. On the other hand, in certain local responses, and under certain conditions, catecholamines may actually boost regional immune responses, through induction of IL-1, tumor necrosis factor-alpha, and primarily IL-8 production. Thus, the activation of SNS during an immune response might be aimed to localize the inflammatory response, through induction of neutrophil accumulation and stimulation of more specific humoral immune responses, although systemically it may suppress Th1 responses, and, thus protect the organism from the detrimental effects of proinflammatory cytokines and other products of activated macrophages. The above-mentioned immunomodulatory effects of catecholamines and the role of SNS are also discussed in the context of their clinical implication in certain infections, major injury and sepsis, autoimmunity, chronic pain and fatigue syndromes, and tumor growth. Finally, the pharmacological manipulation of the sympathetic-immune interface is reviewed with focus on new therapeutic strategies using selective alpha(2)- and beta(2)-adrenoreceptor agonists and antagonists and inhibitors of phosphodiesterase type IV in the treatment of experimental models of autoimmune diseases, fibromyalgia, and chronic fatigue syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The voltage-gated potassium channels and their relatives.

            The voltage-gated potassium channels are the prototypical members of a family of membrane signalling proteins. These protein-based machines have pores that pass millions of ions per second across the membrane with astonishing selectivity, and their gates snap open and shut in milliseconds as they sense changes in voltage or ligand concentration. The architectural modules and functional components of these sophisticated signalling molecules are becoming clear, but some important links remain to be elucidated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interactions of the heart and the liver.

              There is a mutual interaction between the function of the heart and the liver and a broad spectrum of acute and chronic entities that affect both the heart and the liver. These can be classified into heart diseases affecting the liver, liver diseases affecting the heart, and conditions affecting the heart and the liver at the same time. In chronic and acute cardiac hepatopathy, owing to cardiac failure, a combination of reduced arterial perfusion and passive congestion leads to cardiac cirrhosis and cardiogenic hypoxic hepatitis. These conditions may impair the liver function and treatment should be directed towards the primary heart disease and seek to secure perfusion of vital organs. In patients with advanced cirrhosis, physical and/or pharmacological stress may reveal a reduced cardiac performance with systolic and diastolic dysfunction and electrophysical abnormalities termed cirrhotic cardiomyopathy. Electrophysiological abnormalities include prolonged QT interval, chronotropic incompetance, and electromechanical uncoupling. No specific therapy can be recommended, but it should be supportive and directed against the heart failure. Numerous conditions affect both the heart and the liver such as infections, inflammatory and systemic diseases, and chronic alcoholism. The risk and prevalence of coronary artery disease are increasing in cirrhotic patients and since the perioperative mortality is high, a careful cardiac evaluation of such patients is required prior to orthotopic liver transplantation.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/158877
                URI : http://frontiersin.org/people/u/195549
                URI : http://frontiersin.org/people/u/195942
                Journal
                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                2297-055X
                27 May 2015
                2015
                : 2
                : 26
                Affiliations
                [1] 1Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy
                Author notes

                Edited by: Theofilos M. Kolettis, University of Ioannina, Greece

                Reviewed by: Luigi Venetucci, University of Manchester, UK; Giannis G. Baltogiannis, Cardiovascular Institute, Greece

                *Correspondence: Pietro Enea Lazzerini, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Policlinico “Le Scotte”, Viale Bracci, Siena, 53100, Italy, lazzerini7@ 123456unisi.it

                Specialty section: This article was submitted to Clinical Arrhythmology, a section of the journal Frontiers in Cardiovascular Medicine

                Article
                10.3389/fcvm.2015.00026
                4712633
                26798623
                4ec1a272-982d-4a0f-9c96-465f9d739233
                Copyright © 2015 Lazzerini, Capecchi and Laghi-Pasini.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 February 2015
                : 08 May 2015
                Page count
                Figures: 4, Tables: 4, Equations: 0, References: 174, Pages: 17, Words: 13458
                Categories
                Cardiovascular Medicine
                Reviews in Medicine

                long qt syndrome,inflammation,cytokines,immunity,autoantibodies,anti-ro/ssa

                Comments

                Comment on this article