0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Role of Cytochrome P450 2B1 in Puromycin Aminonucleoside-Induced Cytotoxicity to Glomerular Epithelial Cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Puromycin aminonucleoside (PAN)-induced glomerular injury in rats mimics minimal-change nephrotic syndrome (NS) in humans. We have demonstrated an important role of cytochrome P450 (CYP) as a significant source of catalytic iron in this model of NS. The current study was designed to identify CYP isozyme(s) present in the rat glomerular epithelial cells (GEC) and to explore the role of the specific CYP isozyme in PAN-induced cytotoxicity. CYP2B1 was identified in GEC by immunocytochemistry and Western blot. Treatment of GEC with PAN resulted in a marked generation of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and reduction of CYP2B1 content associated with significant increase in catalytic iron and hydroxyl radical formation. Preincubating GEC with CYP2B1 inhibitors (piperine and cimetidine) and H<sub>2</sub>O<sub>2</sub> scavenger (pyruvate) significantly reduced H<sub>2</sub>O<sub>2 </sub>generation, preserved CYP2B1 content, prevented the increase in catalytic iron and hydroxyl radical formation including PAN-induced cytotoxicity. We also observed the induction of heme oxygenase (HO-1) in PAN-treated GEC, and this up-regulation was reduced by pretreatment of the CYP inhibitors and pyruvate. Our data thus indicate an important role of CYP2B1 in PAN-induced cytotoxicity by serving as a site of reactive oxygen metabolite generation and a significant source of catalytic iron.

          Related collections

          Most cited references 10

          • Record: found
          • Abstract: not found
          • Article: not found

          Reduced stress defense in heme oxygenase 1-deficient cells

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A microplate assay for the detection of oxidative products using 2',7'-dichlorofluorescin-diacetate.

            A fluorometric microplate assay was established for the detection of respiratory burst activity in phagocytic cells by assessing oxidation of 2',7'-dichlorofluorescin-diacetate (DCFH-DA). This method is based on flow cytometric studies by Bass et al. (J. Immunol. 130 (1983) p. 1910) describing intracellular detection of DCFH oxidation due to the presence of hydrogen peroxides. In the present study we have adapted the assay for use in microtiter plates to determine the amount of extracellular reactive oxidative products. DCFH-DA, granulocytes and stimuli (phorbol myristate acetate, n-formyl-methionyl-leucylphenylalanine, concanavalin A) were added to microtiter plates and after incubation at 37 degrees C, the development of fluorescence intensity was read in a fluorescence concentration analyzer (FCA, Baxter). Calibration of fluorescence units recorded by the FCA was achieved by comparison with defined amounts of fluorescent DCF. The change in measured fluorescence was linear with cell density over the range of 2 x 10(5)-1 x 10(6) cells/well. Cumulative DCF generation in individual wells could be recorded non-destructively at frequent intervals for time course measurements. Results from FCA measurements correlated perfectly with the FACS analysis of the same samples (r = 0.99). In conclusion, this assay can be useful for screening monoclonal antibodies recognizing cell surface structures possibly involved in signal transduction as well as for testing phagocytes for their capacity to release reactive oxidative intermediates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity.

              Cisplatin is a widely used antineoplastic agent that has nephrotoxicity as a major side effect. The underlying mechanism of this nephrotoxicity is still not well known. Iron has been implicated to play an important role in several models of tissue injury, presumably through the generation of hydroxyl radicals via the Haber-Weiss reaction or other highly toxic free radicals. In the present study we examined the catalytic iron content and the effect of iron chelators in an in vitro model of cisplatin-induced cytotoxicity in LLC-PK1 cells (renal tubular epithelial cells) and in an in vivo model of cisplatin-induced acute renal failure in rats. Exposure of LLC-PK1 cells to cisplatin resulted in a significant increase in bleomycin-detectable iron (iron capable of catalyzing free radical reactions) released into the medium. Concurrent incubation of LLC-PK1 cells with iron chelators including deferoxamine and 1,10-phenanthroline significantly attenuated cisplatin-induced cytotoxicity as measured by lactate dehydrogenase (LDH) release. Bleomycin-detectable iron content was also markedly increased in the kidney of rats treated with cisplatin. Similarly, administration of deferoxamine in rats provided marked functional (as measured by blood urea nitrogen and creatinine) and histological protection against cisplatin-induced acute renal failure. In a separate study, we examined the role of hydroxyl radical in cisplatin-induced nephrotoxicity. Incubation of LLC-PK1 cells with cisplatin caused an increase in hydroxyl radical formation. Hydroxyl radical scavengers, dimethyl sulfoxide, mannitol and benzoic acid, significantly reduced cisplatin-induced cytotoxicity and, treatment with dimethyl sulfoxide or dimethylthiourea provided significant protection against cisplatin-induced acute renal failure. Taken together, our data strongly support a critical role for iron in mediating tissue injury via hydroxyl radical (or a similar oxidant) in this model of nephrotoxicity.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2003
                May 2003
                17 November 2004
                : 94
                : 1
                : e17-e24
                Affiliations
                Departments of aPediatrics and bPathology, University of Mississippi Medical Center, Jackson, Miss., USA
                Article
                70815 Nephron Exp Nephrol 2003;94:e17–e24
                10.1159/000070815
                12806184
                © 2003 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 11, References: 46, Pages: 1
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/70815
                Categories
                Original Paper

                Comments

                Comment on this article