12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Alterations of microbial populations and composition in the rhizosphere and bulk soil as affected by residual acetochlor.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acetochlor is a widely used herbicide in maize fields; however, the ecological risk of its residue in the soil-plant system remains unknown. We investigated the dissipation dynamics of field dose acetochlor and clarified its impact on microbial biomass and community structure both in the rhizosphere and bulk soil over 1 month after its application. Soil microbial parameters such as quantities of culturable bacteria and fungi represented by colony-forming units, soil microbial biomass carbon (SMB(C)), and phospholipid fatty acids (PLFAs) were determined across different sampling times. The results showed that the dissipation half-lives of acetochlor were, respectively, 2.8 and 3.4 days in the rhizosphere and bulk soil, and 0.02-0.07 μg/g residual acetochlor could be detected in the soil 40 days after its application. Compared to the bulk soil, microbial communities in the rhizosphere soil were inclined to be affected by the application of acetochlor: SMB(C) content and bacterial growth were most likely to be increased; however, fungal growth was prone to be inhibited. The principal component analysis of PLFAs, as well as the comparisons of fungi/bacteria and cy17:0/C16:1ω9c ratios between different treatments over sampling time, revealed that the soil microbial community composition was significantly affected by acetochlor at its early application stage (at day 15); thereafter, the effects of acetochlor were attenuated or even could not be detected. Our results suggested that residual acetochlor did not confer a long-term impairment on viable bacterial groups in the rhizosphere and bulk soil.

          Related collections

          Author and article information

          Journal
          Environ Sci Pollut Res Int
          Environmental science and pollution research international
          Springer Nature America, Inc
          1614-7499
          0944-1344
          Jan 2013
          : 20
          : 1
          Affiliations
          [1 ] State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China.
          Article
          10.1007/s11356-012-1061-3
          22811047
          4ecc3b35-3074-460b-ad14-4079993d1ad2
          History

          Comments

          Comment on this article