26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Is L-methionine a trigger factor for Alzheimer’s-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          L-methionine, the principal sulfur-containing amino acid in proteins, plays critical roles in cell physiology as an antioxidant and in the breakdown of fats and heavy metals. Previous studies suggesting the use of L-methionine as a treatment for depression and other diseases indicate that it might also improve memory and propose a role in brain function. However, some evidence indicates that an excess of methionine can be harmful and can increase the risk of developing Type-2 diabetes, heart diseases, certain types of cancer, brain alterations such as schizophrenia, and memory impairment.

          Results

          Here, we report the effects of an L-methionine-enriched diet in wild-type mice and emphasize changes in brain structure and function. The animals in our studypresented 1) higher levels of phosphorylated tau protein, 2) increased levels of amyloid-β (Aβ)-peptides, including the formation of Aβ oligomers, 3) increased levels of inflammatory response,4) increased oxidative stress, 5) decreased level of synaptic proteins, and 6) memory impairment and loss. We also observed dysfunction of the Wnt signaling pathway.

          Conclusion

          Taken together, the results of our study indicate that an L-methionine-enriched diet causes neurotoxic effects in vivo and might contribute to the appearance of Alzheimer’s-like neurodegeneration.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13024-015-0057-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          A specific amyloid-beta protein assembly in the brain impairs memory.

          Memory function often declines with age, and is believed to deteriorate initially because of changes in synaptic function rather than loss of neurons. Some individuals then go on to develop Alzheimer's disease with neurodegeneration. Here we use Tg2576 mice, which express a human amyloid-beta precursor protein (APP) variant linked to Alzheimer's disease, to investigate the cause of memory decline in the absence of neurodegeneration or amyloid-beta protein amyloidosis. Young Tg2576 mice ( 14 months old) form abundant neuritic plaques containing amyloid-beta (refs 3-6). We found that memory deficits in middle-aged Tg2576 mice are caused by the extracellular accumulation of a 56-kDa soluble amyloid-beta assembly, which we term Abeta*56 (Abeta star 56). Abeta*56 purified from the brains of impaired Tg2576 mice disrupts memory when administered to young rats. We propose that Abeta*56 impairs memory independently of plaques or neuronal loss, and may contribute to cognitive deficits associated with Alzheimer's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging roles of Wnts in the adult nervous system.

            The roles of the Wnt signalling pathway in several developmental processes, including synaptic differentiation, are well characterized. The expression of Wnt ligands and Wnt signalling components in the mature mammalian CNS suggests that this pathway might also play a part in synaptic maintenance and function. In fact, Wnts have a crucial role in synaptic physiology, as they modulate the synaptic vesicle cycle, the trafficking of neurotransmitter receptors and the interaction of these receptors with scaffold proteins in postsynaptic regions. In addition, Wnts participate in adult neurogenesis and protect excitatory synaptic terminals from amyloid-beta oligomer toxicity. Here, the latest insights into the function of Wnt signalling in the adult nervous system and therapeutic opportunities for neurodegenerative diseases such as Alzheimer's and Parkinson's disease are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein S-nitrosylation in health and disease: a current perspective.

              Protein S-nitrosylation constitutes a large part of the ubiquitous influence of nitric oxide on cellular signal transduction and accumulating evidence indicates important roles for S-nitrosylation both in normal physiology and in a broad spectrum of human diseases. Here we review recent findings that implicate S-nitrosylation in cardiovascular, pulmonary, musculoskeletal and neurological (dys)function, as well as in cancer. The emerging picture shows that, in many cases, pathophysiology correlates with hypo- or hyper-S-nitrosylation of specific protein targets rather than a general cellular insult due to loss of or enhanced nitric oxide synthase activity. In addition, it is increasingly evident that dysregulated S-nitrosylation can not only result from alterations in the expression, compartmentalization and/or activity of nitric oxide synthases, but can also reflect a contribution from denitrosylases, including prominently the S-nitrosoglutathione (GSNO)-metabolizing enzyme GSNO reductase. Finally, because exogenous mediators of protein S-nitrosylation or denitrosylation can substantially affect the development or progression of disease, potential therapeutic agents that modulate S-nitrosylation could well have broad clinical utility.
                Bookmark

                Author and article information

                Contributors
                + (56)-2-6862724 , ninestrosa@bio.puc.cl
                Journal
                Mol Neurodegener
                Mol Neurodegener
                Molecular Neurodegeneration
                BioMed Central (London )
                1750-1326
                21 November 2015
                21 November 2015
                2015
                : 10
                : 62
                Affiliations
                [ ]Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas, P. Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
                [ ]Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
                [ ]Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
                [ ]Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile
                [ ]Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
                [ ]CARE Biomedical Center, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
                Article
                57
                10.1186/s13024-015-0057-0
                4654847
                26590557
                4ed584d3-c977-4761-afcc-15397335d144
                © Tapia-Rojas et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 November 2014
                : 2 November 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Neurosciences
                l-methionine,amyloid,tau,memory impairment,alzheimer’s disease
                Neurosciences
                l-methionine, amyloid, tau, memory impairment, alzheimer’s disease

                Comments

                Comment on this article