4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-Loop Model of Alzheimer Disease: An Integrated Perspective on the Wnt/GSK3β, α-Synuclein, and Type 3 Diabetes Hypotheses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As the prevalence of Alzheimer disease (AD) continues to rise unabated, new models have been put forth to improve our understanding of this devastating condition. Although individual models may have their merits, integrated models may prove more valuable. Indeed, the reliable failures of monotherapies for AD, and the ensuing surrender of major drug companies, suggests that an integrated perspective may be necessary if we are to invent multifaceted treatments that could ultimately prove more successful. In this review article, we discuss the Wnt/Glycogen Synthase Kinase 3β (GSK3β), α-synuclein, and type 3 diabetes hypotheses of AD, and their deep interconnection, in order to foster the integrative thinking that may be required to reach a solution for the coming neurological epidemic.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          alpha-Synuclein is phosphorylated in synucleinopathy lesions.

          The deposition of the abundant presynaptic brain protein alpha-synuclein as fibrillary aggregates in neurons or glial cells is a hallmark lesion in a subset of neurodegenerative disorders. These disorders include Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy, collectively referred to as synucleinopathies. Importantly, the identification of missense mutations in the alpha-synuclein gene in some pedigrees of familial PD has strongly implicated alpha-synuclein in the pathogenesis of PD and other synucleinopathies. However, specific post-translational modifications that underlie the aggregation of alpha-synuclein in affected brains have not, as yet, been identified. Here, we show by mass spectrometry analysis and studies with an antibody that specifically recognizes phospho-Ser 129 of alpha-synuclein, that this residue is selectively and extensively phosphorylated in synucleinopathy lesions. Furthermore, phosphorylation of alpha-synuclein at Ser 129 promoted fibril formation in vitro. These results highlight the importance of phosphorylation of filamentous proteins in the pathogenesis of neurodegenerative disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo.

            Two substrates of insulin-degrading enzyme (IDE), amyloid beta-protein (Abeta) and insulin, are critically important in the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2), respectively. We previously identified IDE as a principal regulator of Abeta levels in neuronal and microglial cells. A small chromosomal region containing a mutant IDE allele has been associated with hyperinsulinemia and glucose intolerance in a rat model of DM2. Human genetic studies have implicated the IDE region of chromosome 10 in both AD and DM2. To establish whether IDE hypofunction decreases Abeta and insulin degradation in vivo and chronically increases their levels, we characterized mice with homozygous deletions of the IDE gene (IDE --). IDE deficiency resulted in a >50% decrease in Abeta degradation in both brain membrane fractions and primary neuronal cultures and a similar deficit in insulin degradation in liver. The IDE -- mice showed increased cerebral accumulation of endogenous Abeta, a hallmark of AD, and had hyperinsulinemia and glucose intolerance, hallmarks of DM2. Moreover, the mice had elevated levels of the intracellular signaling domain of the beta-amyloid precursor protein, which was recently found to be degraded by IDE in vitro. Together with emerging genetic evidence, our in vivo findings suggest that IDE hypofunction may underlie or contribute to some forms of AD and DM2 and provide a mechanism for the recently recognized association among hyperinsulinemia, diabetes, and AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence

              Background People with diabetes can suffer from diverse complications that seriously erode quality of life. Diabetes, costing the United States more than $174 billion per year in 2007, is expected to take an increasingly large financial toll in subsequent years. Accurate projections of diabetes burden are essential to policymakers planning for future health care needs and costs. Methods Using data on prediabetes and diabetes prevalence in the United States, forecasted incidence, and current US Census projections of mortality and migration, the authors constructed a series of dynamic models employing systems of difference equations to project the future burden of diabetes among US adults. A three-state model partitions the US population into no diabetes, undiagnosed diabetes, and diagnosed diabetes. A four-state model divides the state of "no diabetes" into high-risk (prediabetes) and low-risk (normal glucose) states. A five-state model incorporates an intervention designed to prevent or delay diabetes in adults at high risk. Results The authors project that annual diagnosed diabetes incidence (new cases) will increase from about 8 cases per 1,000 in 2008 to about 15 in 2050. Assuming low incidence and relatively high diabetes mortality, total diabetes prevalence (diagnosed and undiagnosed cases) is projected to increase from 14% in 2010 to 21% of the US adult population by 2050. However, if recent increases in diabetes incidence continue and diabetes mortality is relatively low, prevalence will increase to 33% by 2050. A middle-ground scenario projects a prevalence of 25% to 28% by 2050. Intervention can reduce, but not eliminate, increases in diabetes prevalence. Conclusions These projected increases are largely attributable to the aging of the US population, increasing numbers of members of higher-risk minority groups in the population, and people with diabetes living longer. Effective strategies will need to be undertaken to moderate the impact of these factors on national diabetes burden. Our analysis suggests that widespread implementation of reasonably effective preventive interventions focused on high-risk subgroups of the population can considerably reduce, but not eliminate, future increases in diabetes prevalence.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                31 July 2019
                2019
                : 11
                : 184
                Affiliations
                [1] 1Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford, United Kingdom
                [2] 2Department of Neuroscience, Washington University in St. Louis , St. Louis, MO, United States
                Author notes

                Edited by: Elena Marcello, University of Milan, Italy

                Reviewed by: Filippo Caraci, University of Catania, Italy; Margarita C. Dinamarca, University of Basel, Switzerland

                *Correspondence: Nicholas G. Norwitz nicholas.norwitz@ 123456dpag.ox.ac.uk
                Article
                10.3389/fnagi.2019.00184
                6685392
                4ed71e81-cf63-43a8-bf6a-449d256725de
                Copyright © 2019 Norwitz, Mota, Norwitz and Clarke.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 May 2019
                : 05 July 2019
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 145, Pages: 14, Words: 11908
                Categories
                Neuroscience
                Review

                Neurosciences
                alzheimer disease,,α-synuclein,gsk3β,parkinson’s disease,tau,type 3 diabetes,wnt-signaling

                Comments

                Comment on this article