30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calcium signaling around Mitochondria Associated Membranes (MAMs)

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Calcium (Ca 2+) homeostasis is fundamental for cell metabolism, proliferation, differentiation, and cell death. Elevation in intracellular Ca 2+ concentration is dependent either on Ca 2+ influx from the extracellular space through the plasma membrane, or on Ca 2+ release from intracellular Ca 2+ stores, such as the endoplasmic/sarcoplasmic reticulum (ER/SR). Mitochondria are also major components of calcium signalling, capable of modulating both the amplitude and the spatio-temporal patterns of Ca 2+ signals. Recent studies revealed zones of close contact between the ER and mitochondria called MAMs (Mitochondria Associated Membranes) crucial for a correct communication between the two organelles, including the selective transmission of physiological and pathological Ca 2+ signals from the ER to mitochondria. In this review, we summarize the most up-to-date findings on the modulation of intracellular Ca 2+ release and Ca 2+ uptake mechanisms. We also explore the tight interplay between ER- and mitochondria-mediated Ca 2+ signalling, covering the structural and molecular properties of the zones of close contact between these two networks.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          A class of membrane proteins shaping the tubular endoplasmic reticulum.

          How is the characteristic shape of a membrane bound organelle achieved? We have used an in vitro system to address the mechanism by which the tubular network of the endoplasmic reticulum (ER) is generated and maintained. Based on the inhibitory effect of sulfhydryl reagents and antibodies, network formation in vitro requires the integral membrane protein Rtn4a/NogoA, a member of the ubiquitous reticulon family. Both in yeast and mammalian cells, the reticulons are largely restricted to the tubular ER and are excluded from the continuous sheets of the nuclear envelope and peripheral ER. Upon overexpression, the reticulons form tubular membrane structures. The reticulons interact with DP1/Yop1p, a conserved integral membrane protein that also localizes to the tubular ER. These proteins share an unusual hairpin topology in the membrane. The simultaneous absence of the reticulons and Yop1p in S. cerevisiae results in disrupted tubular ER. We propose that these "morphogenic" proteins partition into and stabilize highly curved ER membrane tubules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake

            Mitochondrial calcium uptake plays a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients, and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here, we utilize an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics, and organelle proteomics. RNA interference against 13 top candidates highlighted one gene that we now call mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the organelle’s inner membrane and has two canonical EF hands that are essential for its activity, suggesting a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high capacity mitochondrial calcium entry. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NCLX is an essential component of mitochondrial Na+/Ca2+ exchange.

              Mitochondrial Ca(2+) efflux is linked to numerous cellular activities and pathophysiological processes. Although it is established that an Na(+)-dependent mechanism mediates mitochondrial Ca(2+) efflux, the molecular identity of this transporter has remained elusive. Here we show that the Na(+)/Ca(2+) exchanger NCLX is enriched in mitochondria, where it is localized to the cristae. Employing Ca(2+) and Na(+) fluorescent imaging, we demonstrate that mitochondrial Na(+)-dependent Ca(2+) efflux is enhanced upon overexpression of NCLX, is reduced by silencing of NCLX expression by siRNA, and is fully rescued by the concomitant expression of heterologous NCLX. NCLX-mediated mitochondrial Ca(2+) transport was inhibited, moreover, by CGP-37157 and exhibited Li(+) dependence, both hallmarks of mitochondrial Na(+)-dependent Ca(2+) efflux. Finally, NCLX-mediated mitochondrial Ca(2+) exchange is blocked in cells expressing a catalytically inactive NCLX mutant. Taken together, our results converge to the conclusion that NCLX is the long-sought mitochondrial Na(+)/Ca(2+) exchanger.
                Bookmark

                Author and article information

                Journal
                Cell Commun Signal
                Cell Communication and Signaling : CCS
                BioMed Central
                1478-811X
                2011
                22 September 2011
                : 9
                : 19
                Affiliations
                [1 ]Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
                [2 ]Nencki Institute of Experimental Biology, Warsaw, Poland
                Article
                1478-811X-9-19
                10.1186/1478-811X-9-19
                3198985
                21939514
                4ede05b9-c276-4d93-a306-0b711fcde64f
                Copyright ©2011 Patergnani et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 June 2011
                : 22 September 2011
                Categories
                Review

                Cell biology
                Cell biology

                Comments

                Comment on this article