12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A novel class of herpesvirus with bivalve hosts.

      The Journal of General Virology

      Amino Acid Sequence, Animals, Base Sequence, Capsid, chemistry, DNA Helicases, genetics, Genome, Viral, Herpesviridae, classification, isolation & purification, Inhibitor of Apoptosis Proteins, Larva, virology, Membrane Proteins, Molecular Sequence Data, Ostreidae, Proteins, Pyrophosphatases, Sequence Alignment

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ostreid herpesvirus 1 (OsHV-1) is the only member of the Herpesviridae that has an invertebrate host and is associated with sporadic mortality in the Pacific oyster (Crassostrea gigas) and other bivalve species. Cryo-electron microscopy of purified capsids revealed the distinctive T=16 icosahedral structure characteristic of herpesviruses, although the preparations examined lacked pentons. The gross genome organization of OsHV-1 was similar to that of certain mammalian herpesviruses (including herpes simplex virus and human cytomegalovirus), consisting of two invertible unique regions (U(L), 167.8 kbp; U(S), 3.4 kbp) each flanked by inverted repeats (TR(L)/IR(L), 7.6 kbp; TR(S)/IR(S), 9.8 kbp), with an additional unique sequence (X, 1.5 kbp) between IR(L) and IR(S). Of the 124 unique genes predicted from the 207 439 bp genome sequence, 38 were members of 12 families of related genes and encoded products related to helicases, inhibitors of apoptosis, deoxyuridine triphosphatase and RING-finger proteins, in addition to membrane-associated proteins. Eight genes in three of the families appeared to be fragmented. Other genes that did not belong to the families were predicted to encode DNA polymerase, the two subunits of ribonucleotide reductase, a helicase, a primase, the ATPase subunit of terminase, a RecB-like protein, additional RING-like proteins, an ion channel and several other membrane-associated proteins. Sequence comparisons showed that OsHV-1 is at best tenuously related to the two classes of vertebrate herpesviruses (those associated with mammals, birds and reptiles, and those associated with bony fish and amphibians). OsHV-1 thus represents a third major class of the herpesviruses.

          Related collections

          Author and article information

          Journal
          15604430
          10.1099/vir.0.80382-0

          Comments

          Comment on this article