24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Karen Vousden: Getting the big picture on p53

      news
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vousden studies the activities and regulation of the tumor suppressor p53.

          Abstract

          Vousden studies the activities and regulation of the tumor suppressor p53.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found

          TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis

          The p53 tumor-suppressor protein prevents cancer development through various mechanisms, including the induction of cell-cycle arrest, apoptosis, and the maintenance of genome stability. We have identified a p53-inducible gene named TIGAR (TP53-induced glycolysis and apoptosis regulator). TIGAR expression lowered fructose-2,6-bisphosphate levels in cells, resulting in an inhibition of glycolysis and an overall decrease in intracellular reactive oxygen species (ROS) levels. These functions of TIGAR correlated with an ability to protect cells from ROS-associated apoptosis, and consequently, knockdown of endogenous TIGAR expression sensitized cells to p53-induced death. Expression of TIGAR may therefore modulate the apoptotic response to p53, allowing survival in the face of mild or transient stress signals that may be reversed or repaired. The decrease of intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic damage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PUMA, a novel proapoptotic gene, is induced by p53.

            The p53 tumor-suppressor protein functions as a transcriptional activator, and several p53-inducible genes that play a role in the induction of apoptosis in response to p53 have been described. We have identified a novel gene named PUMA (p53 upregulated modulator of apoptosis) as a target for activation by p53. This gene encodes two BH3 domain-containing proteins (PUMA-alpha and PUMA-beta) that are induced in cells following p53 activation. PUMA-alpha and PUMA-beta show similar activities; they bind to Bcl-2, localize to the mitochondria to induce cytochrome c release, and activate the rapid induction of programmed cell death. Antisense inhibition of PUMA expression reduced the apoptotic response to p53, and PUMA is likely to play a role in mediating p53-induced cell death through the cytochrome c/Apaf-1-dependent pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of p53 stability and function by the deubiquitinating enzyme USP42.

              The p53 tumour suppressor protein is a transcription factor that prevents oncogenic progression by activating the expression of apoptosis and cell-cycle arrest genes in stressed cells. The stability of p53 is tightly regulated by ubiquitin-dependent degradation, driven mainly by the ubiquitin ligase MDM2. In this study, we have identified USP42 as a DUB that interacts with and deubiquitinates p53. USP42 forms a direct complex with p53 and controls level of ubiquitination during the early phase of the response to a range of stress signals. Although we do not find a clear role for USP42 in controlling either the basal or fully activated levels of p53, the function of USP42 is required to allow the rapid activation of p53-dependent transcription and a p53-dependent cell-cycle arrest in response to stress. These functions of USP42 are likely to contribute to the repair and recovery of cells from mild or transient damage.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                23 July 2012
                : 198
                : 2
                : 148-149
                Author notes

                Text and Interview by Caitlin Sedwick

                Article
                1982pi
                10.1083/jcb.1982pi
                3410416
                22826118
                4ef5915c-65c7-4aa8-b4c3-57c875e5a3f9
                © 2012 The Rockefeller University Press
                History
                Categories
                News
                People & Ideas

                Cell biology
                Cell biology

                Comments

                Comment on this article