1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of Ano1 Ca 2+-activated Cl channels in generating urethral tone

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies from rabbit show that anoctamin-1 (Ano1) channels expressed in urethral interstitial cells of Cajal (ICCs) serve as a source of depolarization for smooth muscle cells, increasing excitability and tone. However, the role of urethral Ano1 channels is unclear, owing to differences in the species examined and experimental approaches. We summarize findings from different species on the role of urethral ICC and Ano1 channels in urethral contractility and outline proposals for clarifying this topic using cell-specific optogenetic approaches.

          Abstract

          Urinary continence is maintained in the lower urinary tract by the contracture of urethral sphincters, including smooth muscle of the internal urethral sphincter. These contractions occlude the urethral lumen, preventing urine leakage from the bladder to the exterior. Over the past 20 years, research on the ionic conductances that contribute to urethral smooth muscle contractility has greatly accelerated. A debate has emerged over the role of interstitial cell of Cajal (ICC)-like cells in the urethra and their expression of Ca 2+-activated Cl channels encoded by anoctamin-1 [Ano1; transmembrane member 16 A ( Tmem16a) gene]. It has been proposed that Ano1 channels expressed in urethral ICC serve as a source of depolarization for smooth muscle cells, increasing their excitability and contributing to tone. Although a clear role for Ano1 channels expressed in ICC is evident in other smooth muscle organs, such as the gastrointestinal tract, the role of these channels in the urethra is unclear, owing to differences in the species (rabbit, rat, guinea pig, sheep, and mouse) examined and experimental approaches by different groups. The importance of clarifying this situation is evident as effective targeting of Ano1 channels may lead to new treatments for urinary incontinence. In this review, we summarize the key findings from different species on the role of ICC and Ano1 channels in urethral contractility. Finally, we outline proposals for clarifying this controversial and important topic by addressing how cell-specific optogenetic and inducible cell-specific genetic deletion strategies coupled with advances in Ano1 channel pharmacology may clarify this area in future studies.

          NEW & NOTEWORTHY Studies from the rabbit have shown that anoctamin-1 (Ano1) channels expressed in urethral interstitial cells of Cajal (ICC) serve as a source of depolarization for smooth muscle cells, increasing excitability and tone. However, the role of urethral Ano1 channels is unclear, owing to differences in the species examined and experimental approaches. We summarize findings from different species on the role of urethral ICC and Ano1 channels in urethral contractility and outline proposals for clarifying this topic using cell-specific optogenetic approaches.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found

          TMEM16A confers receptor-activated calcium-dependent chloride conductance.

          Calcium (Ca(2+))-activated chloride channels are fundamental mediators in numerous physiological processes including transepithelial secretion, cardiac and neuronal excitation, sensory transduction, smooth muscle contraction and fertilization. Despite their physiological importance, their molecular identity has remained largely unknown. Here we show that transmembrane protein 16A (TMEM16A, which we also call anoctamin 1 (ANO1)) is a bona fide Ca(2+)-activated chloride channel that is activated by intracellular Ca(2+) and Ca(2+)-mobilizing stimuli. With eight putative transmembrane domains and no apparent similarity to previously characterized channels, ANO1 defines a new family of ionic channels. The biophysical properties as well as the pharmacological profile of ANO1 are in full agreement with native Ca(2+)-activated chloride currents. ANO1 is expressed in various secretory epithelia, the retina and sensory neurons. Furthermore, knockdown of mouse Ano1 markedly reduced native Ca(2+)-activated chloride currents as well as saliva production in mice. We conclude that ANO1 is a candidate Ca(2+)-activated chloride channel that mediates receptor-activated chloride currents in diverse physiological processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity.

            Calcium-dependent chloride channels are required for normal electrolyte and fluid secretion, olfactory perception, and neuronal and smooth muscle excitability. The molecular identity of these membrane proteins is still unclear. Treatment of bronchial epithelial cells with interleukin-4 (IL-4) causes increased calcium-dependent chloride channel activity, presumably by regulating expression of the corresponding genes. We performed a global gene expression analysis to identify membrane proteins that are regulated by IL-4. Transfection of epithelial cells with specific small interfering RNA against each of these proteins shows that TMEM16A, a member of a family of putative plasma membrane proteins with unknown function, is associated with calcium-dependent chloride current, as measured with halide-sensitive fluorescent proteins, short-circuit current, and patch-clamp techniques. Our results indicate that TMEM16A is an intrinsic constituent of the calcium-dependent chloride channel. Identification of a previously unknown family of membrane proteins associated with chloride channel function will improve our understanding of chloride transport physiopathology and allow for the development of pharmacological tools useful for basic research and drug development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression cloning of TMEM16A as a calcium-activated chloride channel subunit.

              Calcium-activated chloride channels (CaCCs) are major regulators of sensory transduction, epithelial secretion, and smooth muscle contraction. Other crucial roles of CaCCs include action potential generation in Characean algae and prevention of polyspermia in frog egg membrane. None of the known molecular candidates share properties characteristic of most CaCCs in native cells. Using Axolotl oocytes as an expression system, we have identified TMEM16A as the Xenopus oocyte CaCC. The TMEM16 family of "transmembrane proteins with unknown function" is conserved among eukaryotes, with family members linked to tracheomalacia (mouse TMEM16A), gnathodiaphyseal dysplasia (human TMEM16E), aberrant X segregation (a Drosophila TMEM16 family member), and increased sodium tolerance (yeast TMEM16). Moreover, mouse TMEM16A and TMEM16B yield CaCCs in Axolotl oocytes and mammalian HEK293 cells and recapitulate the broad CaCC expression. The identification of this new family of ion channels may help the development of CaCC modulators for treating diseases including hypertension and cystic fibrosis.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Renal Physiology
                American Journal of Physiology-Renal Physiology
                American Physiological Society
                1931-857X
                1522-1466
                April 01 2021
                April 01 2021
                : 320
                : 4
                : F525-F536
                Affiliations
                [1 ]Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
                Article
                10.1152/ajprenal.00520.2020
                4f04b578-2457-42e0-8134-56fdc201042c
                © 2021
                History

                Comments

                Comment on this article