35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute kidney injury after ingestion of rhubarb: secondary oxalate nephropathy in a patient with type 1 diabetes

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Oxalosis is a metabolic disorder characterized by deposition of oxalate crystals in various organs including the kidney. Whereas primary forms result from genetic defects in oxalate metabolism, secondary forms of oxalosis can result from excessive intestinal oxalate absorption or increased endogenous production, e.g. after intoxication with ethylene glycol.

          Case presentation

          Here, we describe a case of acute crystal-induced renal failure associated with excessive ingestion of rhubarb in a type 1 diabetic with previously normal excretory renal function. Renal biopsy revealed mild mesangial sclerosis, but prominent tubular deposition of oxalate crystals in the kidney. Oxalate serum levels were increased.

          Conclusion

          Acute secondary oxalate nephropathy due to excessive dietary intake of oxalate may lead to acute renal failure in patients with preexisting renal disease like mild diabetic nephropathy. Attention should be payed to special food behaviors when reasons for acute renal failure are explored.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: not found
          • Article: not found

          Oxalate content of foods and its effect on humans

          Sc Bsc (1999)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1.

            Patients with end-stage renal failure owing to primary hyperoxaluria type 1 (PH1) receive dialysis while waiting for transplantation. So far, dialysis has not been shown to overcome the problem of ongoing oxalate production and deposition at extrarenal sites. We report on six children with PH1 who had to be dialyzed for a median period of 2.5 years while awaiting liver transplantation. Aiming at preventing oxalate tissue accretion, oxalate mass transfer was studied and dialysis intensified accordingly. Mean plasma oxalate concentration was between 51 and 137 micromol/l. In three of the six patients with a urinary output between 630 and 3140 ml, urinary removal of oxalate was between 5.6 and 12.4 mmol/week/1.73 m2. Hemodialysis (HD) in five of the six patients demonstrated a mean oxalate dialysance between 158 and 444 l/week/1.73 m2. Peritoneal dialysis (PD) in two of the six patients showed mean oxalate clearances of 66 and 103 l/week/1.73 m2. One patient received HD and PD. By adding all modes of elimination, a mean total oxalate mass between 10.1 and 24.1 mmol/week/1.73 m2 was removed. Dialysis is still necessary as a temporary therapy for a number of patients with PH1. Dialysis should be instituted pre-emptively and maximally exploited by intensified HD/PD treatment protocols, without, however, cutting back urinary output.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Vitamin C-Induced Oxalate Nephropathy

              Although a multitude of syndromes have been thoroughly described as a result of vitamin deficiencies, over consumption of such substances may also be quite dangerous. Intratubular crystallization of calcium oxalate as a result of hyperoxaluria can cause acute renal failure. This type of renal failure is known as oxalate nephropathy. Hyperoxaluria occurs as a result of inherited enzymatic deficiencies known as primary hyperoxaluria or from exogenous sources known as secondary hyperoxaluria. Extensive literature has reported and explained the mechanism of increased absorption of oxalate in malabsorptive syndromes leading to renal injury. However, other causes of secondary hyperoxaluria may also take place either via direct dietary consumption of oxalate rich products or via other substances which may metabolize into oxalate within the body. Vitamin C is metabolized to oxalate. Oral or parenteral administration of this vitamin has been used in multiple settings such as an alternative treatment of malignancy or as an immune booster. This article presents a clinical case in which ingestion of high amounts of vitamin C lead to oxalate nephropathy. This article further reviews other previously published cases in order to illustrate and highlight the potential renal harm this vitamin poses if consumed in excessive amounts.
                Bookmark

                Author and article information

                Journal
                BMC Nephrol
                BMC Nephrol
                BMC Nephrology
                BioMed Central
                1471-2369
                2012
                30 October 2012
                : 13
                : 141
                Affiliations
                [1 ]Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1, 80336, Munich, Germany
                [2 ]Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, Munich, Germany
                Article
                1471-2369-13-141
                10.1186/1471-2369-13-141
                3504561
                23110375
                4f14f9b1-d433-44f6-b4e9-19874cf15527
                Copyright ©2012 Albersmeyer et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 April 2012
                : 18 October 2012
                Categories
                Case Report

                Nephrology
                renal failure,oxalate,malabsorption,diabetes,rhubarb,hyperoxaluria
                Nephrology
                renal failure, oxalate, malabsorption, diabetes, rhubarb, hyperoxaluria

                Comments

                Comment on this article