30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The TGF-β/Smad4 Signaling Pathway in Pancreatic Carcinogenesis and Its Clinical Significance

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal human cancers due to its complicated genomic instability. PDAC frequently presents at an advanced stage with extensive metastasis, which portends a poor prognosis. The known risk factors associated with PDAC include advanced age, smoking, long-standing chronic pancreatitis, obesity, and diabetes. Its association with genomic and somatic mutations is the most important factor for its aggressiveness. The most common gene mutations associated with PDAC include KRas2, p16, TP53, and Smad4. Among these, Smad4 mutation is relatively specific and its inactivation is found in more than 50% of invasive pancreatic adenocarcinomas. Smad4 is a member of the Smad family of signal transducers and acts as a central mediator of transforming growth factor beta (TGF-β) signaling pathways. The TGF-β signaling pathway promotes many physiological processes, including cell growth, differentiation, proliferation, fibrosis, and scar formation. It also plays a major role in the development of tumors through induction of angiogenesis and immune suppression. In this review, we will discuss the molecular mechanism of TGF-β/Smad4 signaling in the pathogenesis of pancreatic adenocarcinoma and its clinical implication, particularly potential as a prognostic factor and a therapeutic target.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epithelial-mesenchymal transitions in development and pathologies.

              The epithelial-mesenchymal transition (EMT) is a fundamental process governing morphogenesis in multicellular organisms. This process is also reactivated in a variety of diseases including fibrosis and in the progression of carcinoma. The molecular mechanisms of EMT were primarily studied in epithelial cell lines, leading to the discovery of transduction pathways involved in the loss of epithelial cell polarity and the acquisition of a variety of mesenchymal phenotypic traits. Similar mechanisms have also been uncovered in vivo in different species, showing that EMT is controlled by remarkably well-conserved mechanisms. Current studies further emphasise the critical importance of EMT and provide a better molecular and functional definition of mesenchymal cells and how they emerged >500 million years ago as a key event in evolution.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                05 January 2017
                January 2017
                : 6
                : 1
                : 5
                Affiliations
                Department of Pathology, New York University School of Medicine, and Langone Medical Center, New York, NY 10016, USA; ahmeds09@ 123456nyumc.org (S.A.); azore-dee.bradshaw@ 123456nyumc.org (A.-D.B.); shweta.gera@ 123456nyumc.org (S.G.); dewanz01@ 123456nyumc.org (M.Z.D.)
                Author notes
                [* ]Correspondence: ruliang.xu@ 123456nyumc.org ; Tel.: +1-212-263-0728; Fax: +1-212-263-7916
                Article
                jcm-06-00005
                10.3390/jcm6010005
                5294958
                28067794
                4f1fc6e8-fb73-4f2b-b1a5-25fc75895631
                © 2017 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 October 2016
                : 27 December 2016
                Categories
                Review

                tgf-β,smad4,pancreatic ductal adenocarcinoma,prognosis,therapy

                Comments

                Comment on this article