17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacological characterization of a novel, potent, selective, and orally active fatty acid amide hydrolase inhibitor, PKM‐833 [( R)‐ N‐(pyridazin‐3‐yl)‐4‐(7‐(trifluoromethyl)chroman‐4‐yl)piperazine‐1‐carboxamide] in rats: Potential for the treatment of inflammatory pain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, we identified a novel fatty acid amide hydrolase (FAAH) inhibitor, PKM‐833 [( R)‐ N‐(pyridazin‐3‐yl)‐4‐(7‐(trifluoromethyl)chroman‐4‐yl)piperazine‐1‐carboxamide]. The aim of the present study is to characterize the pharmacological profile of PKM‐833 in vitro and in vivo. PKM‐833 showed potent inhibitory activities against human and rat FAAH with IC 50 values of 8.8 and 10 nmol/L, respectively, 200‐fold more selectivity against other 137 molecular targets, and irreversible mode of action. In pharmacokinetic and pharmacodynamic studies, PKM‐833 showed excellent brain penetration and good oral bioavailability, and elevated anandamide (AEA) concentrations in the rat brain. These data indicate that PKM‐833 is a potent, selective, orally active, and brain‐penetrable FAAH inhibitor. In behavioral studies using rat models, PKM‐833 significantly attenuated formalin‐induced pain responses (3 mg/kg) and improved mechanical allodynia in complete freund's adjuvant (CFA)‐induced inflammatory pain (0.3‐3 mg/kg). On the other hand, PKM‐833 did not show the analgesic effects against mechanical allodynia in chronic constriction injury (CCI)‐induced neuropathic pain up to 30 mg/kg. Regarding side effects, PKM‐833 had no significant effects on catalepsy and motor coordination up to 30 mg/kg. These results indicate that PKM‐833 is a useful pharmacological agent that can be used to investigate the role of FAAH and may have therapeutic potential for the treatment of inflammatory pain without undesirable side effects.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man.

          A peripheral mononeuropathy was produced in adult rats by placing loosely constrictive ligatures around the common sciatic nerve. The postoperative behavior of these rats indicated that hyperalgesia, allodynia and, possibly, spontaneous pain (or dysesthesia) were produced. Hyperalgesic responses to noxious radiant heat were evident on the second postoperative day and lasted for over 2 months. Hyperalgesic responses to chemogenic pain were also present. The presence of allodynia was inferred from the nocifensive responses evoked by standing on an innocuous, chilled metal floor or by innocuous mechanical stimulation, and by the rats' persistence in holding the hind paw in a guarded position. The presence of spontaneous pain was suggested by a suppression of appetite and by the frequent occurrence of apparently spontaneous nocifensive responses. The affected hind paw was abnormally warm or cool in about one-third of the rats. About one-half of the rats developed grossly overgrown claws on the affected side. Experiments with this animal model may advance our understanding of the neural mechanisms of neuropathic pain disorders in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.

            Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase.

              The medicinal properties of marijuana have been recognized for centuries, but clinical and societal acceptance of this drug of abuse as a potential therapeutic agent remains fiercely debated. An attractive alternative to marijuana-based therapeutics would be to target the molecular pathways that mediate the effects of this drug. To date, these neural signaling pathways have been shown to comprise a cannabinoid receptor (CB(1)) that binds the active constituent of marijuana, tetrahydrocannabinol (THC), and a postulated endogenous CB(1) ligand anandamide. Although anandamide binds and activates the CB(1) receptor in vitro, this compound induces only weak and transient cannabinoid behavioral effects in vivo, possibly a result of its rapid catabolism. Here we show that mice lacking the enzyme fatty acid amide hydrolase (FAAH(-/-)) are severely impaired in their ability to degrade anandamide and when treated with this compound, exhibit an array of intense CB(1)-dependent behavioral responses, including hypomotility, analgesia, catalepsy, and hypothermia. FAAH(-/-)-mice possess 15-fold augmented endogenous brain levels of anandamide and display reduced pain sensation that is reversed by the CB(1) antagonist SR141716A. Collectively, these results indicate that FAAH is a key regulator of anandamide signaling in vivo, setting an endogenous cannabinoid tone that modulates pain perception. FAAH may therefore represent an attractive pharmaceutical target for the treatment of pain and neuropsychiatric disorders.
                Bookmark

                Author and article information

                Contributors
                shunsuke.maehara@mochida.co.jp
                Journal
                Pharmacol Res Perspect
                Pharmacol Res Perspect
                10.1002/(ISSN)2052-1707
                PRP2
                Pharmacology Research & Perspectives
                John Wiley and Sons Inc. (Hoboken )
                2052-1707
                26 February 2020
                April 2020
                : 8
                : 2 ( doiID: 10.1002/prp2.v8.2 )
                : e00569
                Affiliations
                [ 1 ] Biology Laboratory Discovery Research Mochida Pharmaceutical Co., Ltd. Gotemba Shizuoka Japan
                Author notes
                [*] [* ] Correspondence

                Shunsuke Maehara, Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412‐8524, Japan.

                Email: shunsuke.maehara@ 123456mochida.co.jp

                Author information
                https://orcid.org/0000-0001-9640-2271
                https://orcid.org/0000-0002-8915-3825
                Article
                PRP2569
                10.1002/prp2.569
                7043261
                32101384
                4f2b1126-6ad2-405a-8dda-c0004c94c00d
                © 2020 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 17 September 2019
                : 31 January 2020
                : 03 February 2020
                Page count
                Figures: 5, Tables: 2, Pages: 9, Words: 6331
                Funding
                Funded by: Mochida Pharmaceutical Company , open-funder-registry 10.13039/501100004820;
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                April 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.6.1 mode:remove_FC converted:26.02.2020

                analgesia,anandamide,endocannabinoid,faah,pkm‐833
                analgesia, anandamide, endocannabinoid, faah, pkm‐833

                Comments

                Comment on this article