21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Protonation state of inhibitors determines interaction sites within voltage-gated sodium channels

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d4572809e170">Voltage-gated sodium channels are integral in electrical signaling within the human body and are key targets for anesthetics and antiepileptic compounds used in surgeries and the treatment of neurological disorders. We have used molecular simulations to determine where a number of these compounds bind inside the pore of a voltage-gated sodium channel to aid the design of new compounds for treating chronic pain, heart conditions, and epilepsy. We uncover two distinct binding sites inside the pore harnessed by neutral and charged drugs, respectively. This explains why so many anesthetic compounds have both neutral and charged forms: The neutral form more easily enters the pore, but the charged form binds more tightly to effectively block the pore and prevent electrical signaling. </p><p class="first" id="d4572809e173">Voltage-gated sodium channels are essential for carrying electrical signals throughout the body, and mutations in these proteins are responsible for a variety of disorders, including epilepsy and pain syndromes. As such, they are the target of a number of drugs used for reducing pain or combatting arrhythmias and seizures. However, these drugs affect all sodium channel subtypes found in the body. Designing compounds to target select sodium channel subtypes will provide a new therapeutic pathway and would maximize treatment efficacy while minimizing side effects. Here, we examine the binding preferences of nine compounds known to be sodium channel pore blockers in molecular dynamics simulations. We use the approach of replica exchange solute tempering (REST) to gain a more complete understanding of the inhibitors’ behavior inside the pore of NavMs, a bacterial sodium channel, and NavPas, a eukaryotic sodium channel. Using these simulations, we are able to show that both charged and neutral compounds partition into the bilayer, but neutral forms more readily cross it. We show that there are two possible binding sites for the compounds: ( <i>i</i>) a site on helix 6, which has been previously determined by many experimental and computational studies, and ( <i>ii</i>) an additional site, occupied by protonated compounds in which the positively charged part of the drug is attracted into the selectivity filter. Distinguishing distinct binding poses for neutral and charged compounds is essential for understanding the nature of pore block and will aid the design of subtype-selective sodium channel inhibitors. </p>

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2).

          A small change in the Hamiltonian scaling in Replica Exchange with Solute Tempering (REST) is found to improve its sampling efficiency greatly, especially for the sampling of aqueous protein solutions in which there are large-scale solute conformation changes. Like the original REST (REST1), the new version (which we call REST2) also bypasses the poor scaling with system size of the standard Temperature Replica Exchange Method (TREM), reducing the number of replicas (parallel processes) from what must be used in TREM. This reduction is accomplished by deforming the Hamiltonian function for each replica in such a way that the acceptance probability for the exchange of replica configurations does not depend on the number of explicit water molecules in the system. For proof of concept, REST2 is compared with TREM and with REST1 for the folding of the trpcage and β-hairpin in water. The comparisons confirm that REST2 greatly reduces the number of CPUs required by regular replica exchange and greatly increases the sampling efficiency over REST1. This method reduces the CPU time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of a voltage-gated sodium channel in two potentially inactivated states.

            In excitable cells, voltage-gated sodium (Na(V)) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of Na(V) channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type Na(V)Ab channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2 Å resolution. Compared to previous structures of Na(V)Ab channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type Na(V)Ab models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type Na(V)Ab, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in Na(V) channel gating and inactivation. These potential inactivated-state structures provide new insights into Na(V) channel gating and novel avenues to drug development and therapy for a range of debilitating Na(V) channelopathies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel.

              Voltage-gated sodium (Na(v)) channels are essential for the rapid depolarization of nerve and muscle, and are important drug targets. Determination of the structures of Na(v) channels will shed light on ion channel mechanisms and facilitate potential clinical applications. A family of bacterial Na(v) channels, exemplified by the Na(+)-selective channel of bacteria (NaChBac), provides a useful model system for structure-function analysis. Here we report the crystal structure of Na(v)Rh, a NaChBac orthologue from the marine alphaproteobacterium HIMB114 (Rickettsiales sp. HIMB114; denoted Rh), at 3.05 Å resolution. The channel comprises an asymmetric tetramer. The carbonyl oxygen atoms of Thr 178 and Leu 179 constitute an inner site within the selectivity filter where a hydrated Ca(2+) resides in the crystal structure. The outer mouth of the Na(+) selectivity filter, defined by Ser 181 and Glu 183, is closed, as is the activation gate at the intracellular side of the pore. The voltage sensors adopt a depolarized conformation in which all the gating charges are exposed to the extracellular environment. We propose that Na(v)Rh is in an 'inactivated' conformation. Comparison of Na(v)Rh with Na(v)Ab reveals considerable conformational rearrangements that may underlie the electromechanical coupling mechanism of voltage-gated channels.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 21 2018
                :
                :
                : 201714131
                Article
                10.1073/pnas.1714131115
                5889629
                29467289
                4f40aa66-6d4e-4d92-8ad8-195761ea7a49
                © 2018

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article