8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SB202190 inhibits endothelial cell apoptosis via induction of autophagy and heme oxygenase-1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activation of the p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in various detrimental events finally leading to endothelial dysfunction. The present study therefore investigates the impact of the p38 MAPK inhibitor SB202190 on the expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) as well as metabolic activity, apoptosis and autophagy of endothelial cells. Using human umbilical vein endothelial cells (HUVEC) SB202190 was found to cause a time- and concentration-dependent induction of HO-1 protein. Induction of HO-1 protein expression was mimicked by SB203580, another p38 MAPK inhibitor, but not by SB202474, an inactive structural analogue of p38 MAPK inhibitors. HO-1 induction by both SB202190 and SB203580 was also demonstrated by analysis of mRNA expression. On the functional level, SB202190 was shown to increase metabolic activity and autophagy of HUVEC along with diminishing basal apoptosis. Treatment of cells with tin protoporphyrin IX (SnPPIX), a well-characterised HO-1 enzymatic inhibitor, or HO-1 siRNA left SB202190-modulated metabolic activity and autophagy virtually unaltered but caused a significant reversal of the anti-apoptotic action of SB202190. Conversely, however, HO-1 expression by SB202190 became completely suppressed by the autophagy inhibitor bafilomycin A 1. Bafilomycin A 1 likewise fully reversed effects of SB202190 on metabolic activity and apoptosis, albeit significantly inducing apoptosis per se. Collectively, this work demonstrates SB202190 to confer upstream induction of autophagy followed by HO-1 induction resulting in potential protective effects against apoptosis. On the other hand, our data oppose HO-1 to contribute to SB202190-mediated increases in metabolic activity and autophagy, respectively.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: not found
          • Article: not found

          The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pro-oxidant and cytotoxic effects of circulating heme.

            Numerous pathologies may involve toxic side effects of free heme and heme-derived iron. Deficiency of the heme-catabolizing enzyme, heme oxygenase-1 (HO-1), in both a human patient and transgenic knockout mice leads to an abundance of circulating heme and damage to vascular endothelium. Although heme can be directly cytotoxic, the present investigations examine the possibility that hemoglobin-derived heme and iron might be indirectly toxic through the generation of oxidized forms of low-density lipoprotein (LDL). In support, hemoglobin in plasma, when oxidized to methemoglobin by oxidants such as leukocyte-derived reactive oxygen, causes oxidative modification of LDL. Heme, released from methemoglobin, catalyzes the oxidation of LDL, which in turn induces endothelial cytolysis primarily caused by lipid hydroperoxides. Exposure of endothelium to sublethal concentrations of this oxidized LDL leads to induction of both HO-1 and ferritin. Similar endothelial cytotoxicity was caused by LDL isolated from plasma of an HO-1-deficient child. Spectral analysis of the child's plasma revealed a substantial oxidation of plasma hemoglobin to methemoglobin. Iron accumulated in the HO-1-deficient child's LDL and several independent assays revealed oxidative modification of the LDL. We conclude that hemoglobin, when oxidized in plasma, can be indirectly cytotoxic through the generation of oxidized LDL by released heme and that, in response, the intracellular defense-HO-1 and ferritin-is induced. These results may be relevant to a variety of disorders-such as renal failure associated with intravascular hemolysis, hemorrhagic injury to the central nervous system, and, perhaps, atherogenesis-in which hemoglobin-derived heme may promote the formation of fatty acid hydroperoxides.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies.

              Endothelial cells control vascular homeostasis by generating paracrine factors that regulate vascular tone, inhibit platelet function, prevent adhesion of leukocytes, and limit proliferation of vascular smooth muscle. The dominant factor responsible for many of those effects is endothelium-derived nitric oxide (NO). Endothelial dysfunction characterized by enhanced inactivation or reduced synthesis of NO, alone or in combination, is seen in conjunction with risk factors for cardiovascular disease. Endothelial dysfunction can promote vasospasm, thrombosis, vascular inflammation, and proliferation of the intima. Vascular oxidative stress and increased production of reactive oxygen species contributes to mechanisms of vascular dysfunction. Oxidative stress is mainly caused by an imbalance between the activity of endogenous pro-oxidative enzymes (such as NADPH oxidase, xanthine oxidase or the mitochondrial respiratory chain) and antioxidant enzymes (such as superoxide dismutase, glutathione peroxidase, heme oxygenase, thioredoxin peroxidase/peroxiredoxin, catalase and paraoxonase). In addition, small-molecular-weight antioxidants might have a role in the defense against oxidative stress. Increased concentrations of reactive oxygen species reduce bioactive NO through chemical inactivation, forming toxic peroxynitrite, which in turn can uncouple endothelial NO synthase to form a dysfunctional superoxide-generating enzyme that contributes further to oxidative stress. The role of oxidative stress in vascular dysfunction and atherogenesis, and strategies for its prevention are discussed.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                1 May 2018
                1 May 2018
                : 9
                : 33
                : 23149-23163
                Affiliations
                1 Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
                Author notes
                Correspondence to: Burkhard Hinz, burkhard.hinz@ 123456med.uni-rostock.de
                Article
                25234
                10.18632/oncotarget.25234
                5955409
                4f4167ea-40aa-40c9-8c13-b2ae249b21c3
                Copyright: © 2018 Schwartz et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 September 2017
                : 29 March 2018
                Categories
                Research Paper

                Oncology & Radiotherapy
                sb202190,p38 mapk,heme oxygenase-1,apoptosis,autophagy
                Oncology & Radiotherapy
                sb202190, p38 mapk, heme oxygenase-1, apoptosis, autophagy

                Comments

                Comment on this article