8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design, Synthesis, and Biological Evaluation of Proteolysis Targeting Chimeras (PROTACs) for the Dual Degradation of IGF-1R and Src

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A focused PROTAC library was developed to degrade both IGF-1R and Src proteins, which are associated with various cancers. PROTACs with IGF-1R and Src degradation potentials were synthesized by tethering different inhibitor warhead units and the E3 ligase (CRBN) recruiting-pomalidomide with various linkers. The designed PROTACs 12a–b inhibited the proliferation and migration of MCF7 and A549 cancer cells with low micromolar potency (1–5 μM) in various cellular assays.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation.

          The intracellular levels of many proteins are regulated by ubiquitin-dependent proteolysis. One of the best-characterized enzymes that catalyzes the attachment of ubiquitin to proteins is a ubiquitin ligase complex, Skp1-Cullin-F box complex containing Hrt1 (SCF). We sought to artificially target a protein to the SCF complex for ubiquitination and degradation. To this end, we tested methionine aminopeptidase-2 (MetAP-2), which covalently binds the angiogenesis inhibitor ovalicin. A chimeric compound, protein-targeting chimeric molecule 1 (Protac-1), was synthesized to recruit MetAP-2 to SCF. One domain of Protac-1 contains the I kappa B alpha phosphopeptide that is recognized by the F-box protein beta-TRCP, whereas the other domain is composed of ovalicin. We show that MetAP-2 can be tethered to SCF(beta-TRCP), ubiquitinated, and degraded in a Protac-1-dependent manner. In the future, this approach may be useful for conditional inactivation of proteins, and for targeting disease-causing proteins for destruction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induced protein degradation: an emerging drug discovery paradigm

            Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function. This article discusses emerging technologies, such as proteolysis-targeting chimaeras (PROTACs), that exploit cellular quality control machinery to selectively degrade target proteins, which could have advantages over traditional approaches, including the potential to target proteins that are not currently therapeutically tractable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Catalytic in vivo protein knockdown by small-molecule PROTACs.

              The current predominant therapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target's ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                23 April 2020
                April 2020
                : 25
                : 8
                : 1948
                Affiliations
                [1 ]College of Pharmacy, Research Institute of Pharmaceutical sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; sudhakariiim@ 123456gmail.com (S.M.); nklee12@ 123456snu.ac.kr (N.K.L.)
                [2 ]Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; dongchanoh@ 123456snu.ac.kr
                Author notes
                [* ]Correspondence: jyleeut@ 123456snu.ac.kr ; Tel.: +82-02-880-2471
                [†]

                These authors contributed equally to this work.

                Article
                molecules-25-01948
                10.3390/molecules25081948
                7221895
                32340152
                4f46eef3-4996-449d-bfd2-f7589ea0cb58
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 March 2020
                : 20 April 2020
                Categories
                Article

                protacs,anticancer activity,protein degradation,igf-1r,src
                protacs, anticancer activity, protein degradation, igf-1r, src

                Comments

                Comment on this article