660
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      WEGO: a web tool for plotting GO annotations

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Unified, structured vocabularies and classifications freely provided by the Gene Ontology (GO) Consortium are widely accepted in most of the large scale gene annotation projects. Consequently, many tools have been created for use with the GO ontologies. WEGO (Web Gene Ontology Annotation Plot) is a simple but useful tool for visualizing, comparing and plotting GO annotation results. Different from other commercial software for creating chart, WEGO is designed to deal with the directed acyclic graph structure of GO to facilitate histogram creation of GO annotation results. WEGO has been used widely in many important biological research projects, such as the rice genome project and the silkworm genome project. It has become one of the daily tools for downstream gene annotation analysis, especially when performing comparative genomics tasks. WEGO, along with the two other tools, namely External to GO Query and GO Archive Query, are freely available for all users at http://wego.genomics.org.cn. There are two available mirror sites at http://wego2.genomics.org.cn and http://wego.genomics.com.cn. Any suggestions are welcome at wego@ 123456genomics.org.cn .

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A draft sequence of the rice genome (Oryza sativa L. ssp. indica).

            J. Yu (2002)
            We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology.

              The Gene Ontology Annotation (GOA) database (http://www.ebi.ac.uk/GOA) aims to provide high-quality electronic and manual annotations to the UniProt Knowledgebase (Swiss-Prot, TrEMBL and PIR-PSD) using the standardized vocabulary of the Gene Ontology (GO). As a supplementary archive of GO annotation, GOA promotes a high level of integration of the knowledge represented in UniProt with other databases. This is achieved by converting UniProt annotation into a recognized computational format. GOA provides annotated entries for nearly 60,000 species (GOA-SPTr) and is the largest and most comprehensive open-source contributor of annotations to the GO Consortium annotation effort. By integrating GO annotations from other model organism groups, GOA consolidates specialized knowledge and expertise to ensure the data remain a key reference for up-to-date biological information. Furthermore, the GOA database fully endorses the Human Proteomics Initiative by prioritizing the annotation of proteins likely to benefit human health and disease. In addition to a non-redundant set of annotations to the human proteome (GOA-Human) and monthly releases of its GO annotation for all species (GOA-SPTr), a series of GO mapping files and specific cross-references in other databases are also regularly distributed. GOA can be queried through a simple user-friendly web interface or downloaded in a parsable format via the EBI and GO FTP websites. The GOA data set can be used to enhance the annotation of particular model organism or gene expression data sets, although increasingly it has been used to evaluate GO predictions generated from text mining or protein interaction experiments. In 2004, the GOA team will build on its success and will continue to supplement the functional annotation of UniProt and work towards enhancing the ability of scientists to access all available biological information. Researchers wishing to query or contribute to the GOA project are encouraged to email: goa@ebi.ac.uk.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 July 2006
                01 July 2006
                14 July 2006
                : 34
                : Web Server issue
                : W293-W297
                Affiliations
                1James D. Watson Institute of Genome Sciences of Zhejiang University Hangzhou 310008, China
                2Beijing Genomics Institute Beijing 101300, China
                3College of Life Sciences, Peking University Beijing 100871, China
                4The Institute of Human Genetics, University of Aarhus DK-8000 Aarhus C, Denmark
                5Department of Biochemistry and Molecular Biology, University of Southern Denmark DK-5230, Odense M, Denmark
                Author notes
                *To whom correspondence should be addressed. Tel: +86 10 80491664; Fax: +86 10 80498676; Email: wangj@ 123456genomics.org.cn
                Correspondence may also be addressed to Lars Bolund. Tel: +45 89421675; Fax: +45 86123173; Email: bolund@ 123456humgen.au.dk

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

                Article
                10.1093/nar/gkl031
                1538768
                16845012
                4f4b1fbf-957e-4cf1-ae81-d47562e4efff
                © The Author 2006. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

                History
                : 21 October 2005
                : 29 November 2005
                : 29 November 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article