73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Lactobacillus reuteri in Human Health and Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactobacillus reuteri ( L. reuteri) is a well-studied probiotic bacterium that can colonize a large number of mammals. In humans, L. reuteri is found in different body sites, including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to inhibit the colonization of pathogenic microbes and remodel the commensal microbiota composition in the host. Second, L. reuteri can benefit the host immune system. For instance, some L. reuteri strains can reduce the production of pro-inflammatory cytokines while promoting regulatory T cell development and function. Third, bearing the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease the microbial translocation from the gut lumen to the tissues. Microbial translocation across the intestinal epithelium has been hypothesized as an initiator of inflammation. Therefore, inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the decrease in the abundance of L. reuteri in humans in the past decades is correlated with an increase in the incidences of inflammatory diseases over the same period of time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive preventive and/or therapeutic avenue against inflammatory diseases.

          Related collections

          Most cited references194

          • Record: found
          • Abstract: found
          • Article: not found

          Lactobacillus reuteri induces gut intraepithelial CD4 + CD8αα + T cells

          The small intestine contains CD4+CD8αα+ double-positive intraepithelial T lymphocytes (DP IELs), which originate from intestinal CD4+ T cells through downregulation of the transcription factor ThPOK and have regulatory functions. DP IELs are absent in germ-free mice, suggesting that their differentiation depends on microbial factors. We found that DP IEL numbers in mice varied in different vivaria, correlating with the presence of Lactobacillus reuteri. This species induced DP IELs in germ-free mice and conventionally raised mice lacking these cells. L. reuteri did not shape DP–IEL–TCR repertoire, but generated indole derivatives of tryptophan that activated the aryl-hydrocarbon receptor in CD4+ T cells, allowing ThPOK downregulation and differentiation into DP IELs. Thus, L. reuteri together with a tryptophan-rich diet can reprogram intraepithelial CD4+ T cells into immunoregulatory T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes and molecules of lactobacilli supporting probiotic action.

            Lactobacilli have been crucial for the production of fermented products for centuries. They are also members of the mutualistic microbiota present in the human gastrointestinal and urogenital tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities. Many human intervention studies demonstrating health effects have been published. However, as not all studies resulted in positive outcomes, scientific interest arose regarding the precise mechanisms of action of probiotics. Many reported mechanistic studies have addressed mainly the host responses, with less attention being focused on the specificities of the bacterial partners, notwithstanding the completion of Lactobacillus genome sequencing projects, and increasing possibilities of genomics-based and dedicated mutant analyses. In this emerging and highly interdisciplinary field, microbiologists are facing the challenge of molecular characterization of probiotic traits. This review addresses the advances in the understanding of the probiotic-host interaction with a focus on the molecular microbiology of lactobacilli. Insight into the molecules and genes involved should contribute to a more judicious application of probiotic lactobacilli and to improved screening of novel potential probiotics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model.

              Estrogen deficiency is a major risk factor for osteoporosis that is associated with bone inflammation and resorption. Half of women over the age of 50 will experience an osteoporosis related fracture in their lifetime, thus novel therapies are needed to combat post-menopausal bone loss. Recent studies suggest an important role for gut-bone signaling pathways and the microbiota in regulating bone health. Given that the bacterium Lactobacillus reuteri ATCC PTA 6475 (L. reuteri) secretes beneficial immunomodulatory factors, we examined if this candidate probiotic could reduce bone loss associated with estrogen deficiency in an ovariectomized (Ovx) mouse menopausal model. Strikingly, L. reuteri treatment significantly protected Ovx mice from bone loss. Osteoclast bone resorption markers and activators (Trap5 and RANKL) as well as osteoclastogenesis are significantly decreased in L. reuteri-treated mice. Consistent with this, L. reuteri suppressed Ovx-induced increases in bone marrow CD4+ T-lymphocytes (which promote osteoclastogenesis) and directly suppressed osteoclastogenesis in vitro. We also identified that L. reuteri treatment modifies microbial communities in the Ovx mouse gut. Together, our studies demonstrate that L. reuteri treatment suppresses bone resorption and loss associated with estrogen deficiency. Thus, L. reuteri treatment may be a straightforward and cost-effective approach to reduce post-menopausal bone loss.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                19 April 2018
                2018
                : 9
                : 757
                Affiliations
                Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech , Blacksburg, VA, United States
                Author notes

                Edited by: Rustam Aminov, University of Aberdeen, United Kingdom

                Reviewed by: Julio Galvez, Universidad de Granada, Spain; Michael Gänzle, University of Alberta, Canada; Teresa Zotta, Consiglio Nazionale Delle Ricerche (CNR), Italy

                *Correspondence: Xin M. Luo, xinluo@ 123456vt.edu

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.00757
                5917019
                29725324
                4f51357e-1709-45fa-8abb-398776481ce4
                Copyright © 2018 Mu, Tavella and Luo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 September 2017
                : 04 April 2018
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 236, Pages: 17, Words: 0
                Funding
                Funded by: National Institute of Arthritis and Musculoskeletal and Skin Diseases 10.13039/100000069
                Award ID: AR067418
                Categories
                Microbiology
                Review

                Microbiology & Virology
                lactobacillus reuteri,probiotic,microbiota,immune system,inflammatory diseases

                Comments

                Comment on this article