3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coxsackievirus-B4 Infection of Human Primary Pancreatic Ductal Cell Cultures Results in Impairment of Differentiation into Insulin-Producing Cells

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coxsackievirus-B4 (CV-B4) E2 can persist in the pancreatic ductal-like cells (Panc-1 cell line), which results in an impaired differentiation of these cells into islet-like cell aggregates (ICA). In this study, primary pancreatic ductal cells obtained as a by-product of islet isolation from the pancreas of seven brain-dead adults were inoculated with CV-B4 E2, followed-up for 29 days, and the impact was investigated. Viral titers in culture supernatants were analyzed throughout the culture. Intracellular viral RNA was detected by RT-PCR. Levels of ductal cell marker CK19 mRNA and of insulin mRNA were evaluated by qRT-PCR. The concentration of c-peptide in supernatants was determined by ELISA. Ductal cells exposed to trypsin and serum-free medium formed ICA and resulted in an increased insulin secretion. Ductal cells from five brain-dead donors were severely damaged by CV-B4 E2, whereas the virus persisted in cultures of cells obtained from the other two. The ICAs whose formation was induced on day 14 post-inoculation were scarce and appeared tiny in infected cultures. Also, insulin mRNA expression and c-peptide levels were strongly reduced compared to the controls. In conclusion, CV-B4 E2 lysed human primary pancreatic ductal cells or persisted in these cells, which resulted in the impairment of differentiation into insulin-producing cells.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a virus from the pancreas of a child with diabetic ketoacidosis.

          A healthy 10-year-old boy was admitted to the hospital in diabetic ketoacidosis within three days of onset of symptoms of a flu-like illness. He died seven days later and post-mortem examination showed lymphocytic infiltration of the islets of Langerhans and necrosis of beta cells. Inoculation of mouse, monkey and human cell cultures with homogenates from the patient's pancreas led to isolation of a virus. Serologic studies revealed a rise in the titer of neutralizing antibody to this virus from less than 4 on the second hospital day to 32 on the day of death. Neutralization data showed that the virus was related to a diabetogenic variant derived from Coxsackievirus B4. Inoculation of mice with the human isolate produced hyperglycemia, inflammatory cells in the islets of Langerhans and beta-cell necrosis. Staining of mouse pancreatic sections with fluorescein-labeled antiviral antibody revealed viral antigens in beta cells. Both the clinical picture and animal studies suggested that the patient's diabetes was virus induced.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells.

            It is thought that enterovirus infections cause beta-cell damage and contribute to the development of Type 1 diabetes by replicating in the pancreatic islets. We sought evidence for this through autopsy studies and by investigating known enterovirus receptors in cultured human islets. Autopsy pancreases from 12 newborn infants who died of fulminant coxsackievirus infections and from 65 Type 1 diabetic patients were studied for presence of enteroviral ribonucleic acid by in situ hybridisation. Forty non-diabetic control pancreases were included in the study. The expression and role of receptor candidates in cultured human islets were investigated with receptor-specific antibodies using immunocytochemistry and functional assays. Enterovirus-positive islet cells were found in some of both autopsy specimen collections, but not in control pancreases. No infected cells were seen in exocrine tissue. The cell surface molecules, poliovirus receptor and integrin alphavbeta3, which act as enterovirus receptors in established cell lines, were expressed in beta cells. Antibodies to poliovirus receptor, human coxsackievirus and adenovirus receptor and integrin alphavbeta3 protected islets and beta cells from adverse effects of poliovirus, coxsackie B viruses, and several of the arginine-glycine-aspartic acid motifs containing enteroviruses and human parechovirus 1 respectively. No evidence was found for expression of the decay-accelerating factor which acts as a receptor for several islet-cell-replicating echoviruses in established cell lines. The results show a definite islet-cell tropism of enteroviruses in the human pancreas. Some enteroviruses seem to use previously identified cell surface molecules as receptors in beta cells, whereas the identity of receptors used by other enteroviruses remains unknown.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host.

              Enteroviruses are believed to contribute to the pathogenesis of type 1 diabetes mellitus (T1DM). In this Review, the interplay between infection with enteroviruses, the immune system and host genes is discussed. Data from retrospective and prospective epidemiological studies strongly suggest the involvement of enteroviruses, such as coxsackievirus B, in the development of T1DM. Enteroviral RNA and/or proteins can be detected in tissues of patients with T1DM. Isolation of coxsackievirus B4 from the pancreas of patients with T1DM or the presence of enteroviral components in their islets strengthens the hypothesis of a relationship between the virus and the disease. Enteroviruses can play a part in the early phase of T1DM through the infection of beta cells and the activation of innate immunity and inflammation. In contrast with its antiviral role, virus-induced interferon alpha can be deleterious, acting as an initiator of the autoimmunity directed against beta cells. Enteroviruses, through persistent and/or successive infections, can interact with the adaptive immune system. Host genes, such as IFIH1, that influence susceptibility to T1DM are associated with antiviral activities. An increased activity of the IFIH1 protein may promote the development of T1DM. An improved knowledge of the pathogenic mechanisms of enterovirus infections should help to uncover preventive strategies for T1DM.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                02 July 2019
                July 2019
                : 11
                : 7
                : 597
                Affiliations
                [1 ]University of Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France
                [2 ]University of Lille, INSERM, CHU Lille, EGID, UMR 1190- Translational Research in Diabetes, F-59000 Lille, France
                Author notes
                Article
                viruses-11-00597
                10.3390/v11070597
                6669621
                31269669
                4f5390b8-d87d-417a-9449-5f7a5bf5d7f4
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 April 2019
                : 27 June 2019
                Categories
                Brief Report

                Microbiology & Virology
                enterovirus,in vitro,c-peptide,insulin mrna,rt-pcr
                Microbiology & Virology
                enterovirus, in vitro, c-peptide, insulin mrna, rt-pcr

                Comments

                Comment on this article