18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tendon injuries are prevalent and problematic, especially among young and otherwise healthy individuals. The inherently slow innate healing process combined with the inevitable scar tissue formation compromise functional recovery, imposing the need for the development of therapeutic strategies. The limited number of low activity/reparative capacity tendon-resident cells has directed substantial research efforts towards the exploration of the therapeutic potential of various stem cells in tendon injuries and pathophysiologies. Severe injuries require the use of a stem cell carrier to enable cell localisation at the defect site. The present study describes advancements that injectable carriers, tissue grafts, anisotropically orientated biomaterials, and cell-sheets have achieved in preclinical models as stem cell carriers for tendon repair.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydrogels for tissue engineering.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche.

            The repair of injured tendons remains a great challenge, largely owing to a lack of in-depth characterization of tendon cells and their precursors. We show that human and mouse tendons harbor a unique cell population, termed tendon stem/progenitor cells (TSPCs), that has universal stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity. The isolated TSPCs could regenerate tendon-like tissues after extended expansion in vitro and transplantation in vivo. Moreover, we show that TSPCs reside within a unique niche predominantly comprised of an extracellular matrix, and we identify biglycan (Bgn) and fibromodulin (Fmod) as two critical components that organize this niche. Depletion of Bgn and Fmod affects the differentiation of TSPCs by modulating bone morphogenetic protein signaling and impairs tendon formation in vivo. Our results, while offering new insights into the biology of tendon cells, may assist in future strategies to treat tendon diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of the tendon connective tissue.

              P Kannus (2000)
              Tendons consist of collagen (mostly type I collagen) and elastin embedded in a proteoglycan-water matrix with collagen accounting for 65-80% and elastin approximately 1-2% of the dry mass of the tendon. These elements are produced by tenoblasts and tenocytes, which are the elongated fibroblasts and fibrocytes that lie between the collagen fibers, and are organized in a complex hierarchical scheme to form the tendon proper. Soluble tropocollagen molecules form cross-links to create insoluble collagen molecules which then aggregate progressively into microfibrils and then into electronmicroscopically clearly visible units, the collagen fibrils. A bunch of collagen fibrils forms a collagen fiber, which is the basic unit of a tendon. A fine sheath of connective tissue called endotenon invests each collagen fiber and binds fibers together. A bunch of collagen fibers forms a primary fiber bundle, and a group of primary fiber bundles forms a secondary fiber bundle. A group of secondary fiber bundles, in turn, forms a tertiary bundle, and the tertiary bundles make up the tendon. The entire tendon is surrounded by a fine connective tissue sheath called epitenon. The three-dimensional ultrastructure of tendon fibers and fiber bundles is complex. Within one collagen fiber, the fibrils are oriented not only longitudinally but also transversely and horizontally. The longitudinal fibers do not run only parallel but also cross each other, forming spirals. Some of the individual fibrils and fibril groups form spiral-type plaits. The basic function of the tendon is to transmit the force created by the muscle to the bone, and, in this way, make joint movement possible. The complex macro- and microstructure of tendons and tendon fibers make this possible. During various phases of movements, the tendons are exposed not only to longitudinal but also to transversal and rotational forces. In addition, they must be prepared to withstand direct contusions and pressures. The above-described three-dimensional internal structure of the fibers forms a buffer medium against forces of various directions, thus preventing damage and disconnection of the fibers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central
                1757-6512
                2014
                18 March 2014
                18 March 2015
                : 5
                : 2
                : 38
                Affiliations
                [1 ]Network of Excellence for Functional Biomaterials (NFB), Bioscience Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
                [2 ]Regenerative Medicine Institute (REMEDI), Bioscience Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
                Article
                scrt426
                10.1186/scrt426
                4056691
                25157898
                4f547dff-19f6-4a75-9058-54016fba2d30
                Copyright © 2014 Abbah et al.; licensee BioMed Central Ltd.

                The licensee has exclusive rights to distribute this article, in any medium, for 12 months following its publication. After this time, the article is available under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Review

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article