134
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Agrobacterium infection and plant defense—transformation success hangs by a thread

      review-article
      Frontiers in Plant Science
      Frontiers Media S.A.
      Agrobacterium tumefaciens, transformation, plant defense, reactive oxygen species, VIP1

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The value of Agrobacterium tumefaciens for plant molecular biologists cannot be appreciated enough. This soil-borne pathogen has the unique capability to transfer DNA (T-DNA) into plant systems. Gene transfer involves both bacterial and host factors, and it is the orchestration of these factors that determines the success of transformation. Some plant species readily accept integration of foreign DNA, while others are recalcitrant. The timing and intensity of the microbially activated host defense repertoire sets the switch to “yes” or “no.” This repertoire is comprised of the specific induction of mitogen-activated protein kinases (MAPKs), defense gene expression, production of reactive oxygen species (ROS) and hormonal adjustments. Agrobacterium tumefaciens abuses components of the host immunity system it mimics plant protein functions and manipulates hormone levels to bypass or override plant defenses. A better understanding of the ongoing molecular battle between agrobacteria and attacked hosts paves the way toward developing transformation protocols for recalcitrant plant species. This review highlights recent findings in agrobacterial transformation research conducted in diverse plant species. Efficiency-limiting factors, both of plant and bacterial origin, are summarized and discussed in a thought-provoking manner.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation.

          Higher eukaryotes sense microbes through the perception of pathogen-associated molecular patterns (PAMPs). Arabidopsis plants detect a variety of PAMPs including conserved domains of bacterial flagellin and of bacterial EF-Tu. Here, we show that flagellin and EF-Tu activate a common set of signaling events and defense responses but without clear synergistic effects. Treatment with either PAMP results in increased binding sites for both PAMPs. We used this finding in a targeted reverse-genetic approach to identify a receptor kinase essential for EF-Tu perception, which we called EFR. Nicotiana benthamiana, a plant unable to perceive EF-Tu, acquires EF-Tu binding sites and responsiveness upon transient expression of EFR. Arabidopsis efr mutants show enhanced susceptibility to the bacterium Agrobacterium tumefaciens, as revealed by a higher efficiency of T-DNA transformation. These results demonstrate that EFR is the EF-Tu receptor and that plant defense responses induced by PAMPs such as EF-Tu reduce transformation by Agrobacterium.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial disease resistance in Arabidopsis through flagellin perception.

            Plants and animals recognize microbial invaders by detecting pathogen-associated molecular patterns (PAMPs) such as flagellin. However, the importance of flagellin perception for disease resistance has, until now, not been demonstrated. Here we show that treatment of plants with flg22, a peptide representing the elicitor-active epitope of flagellin, induces the expression of numerous defence-related genes and triggers resistance to pathogenic bacteria in wild-type plants, but not in plants carrying mutations in the flagellin receptor gene FLS2. This induced resistance seems to be independent of salicylic acid, jasmonic acid and ethylene signalling. Wild-type and fls2 mutants both display enhanced resistance when treated with crude bacterial extracts, even devoid of elicitor-active flagellin, indicating the existence of functional perception systems for PAMPs other than flagellin. Although fls2 mutant plants are as susceptible as the wild type when bacteria are infiltrated into leaves, they are more susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion, probably at an early step, and contributes to the plant's disease resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens.

              For many years, research on a suite of plant defense responses that begin when plants are exposed to general microbial elicitors was underappreciated, for a good reason: There has been no critical experimental demonstration of their importance in mediating plant resistance during pathogen infection. Today, these microbial elicitors are named pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) and the plant responses are known as PAMP-triggered immunity (PTI). Recent studies provide an elegant explanation for the difficulty of demonstrating the role of PTI in plant disease resistance. It turns out that the important contribution of PTI to disease resistance is masked by pathogen virulence effectors that have evolved to suppress it.
                Bookmark

                Author and article information

                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                18 December 2013
                2013
                : 4
                : 519
                Affiliations
                Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences Vienna, Austria
                Author notes

                Edited by: Stanton B. Gelvin, Purdue University, USA

                Reviewed by: Lois Banta, Williams College, USA; Saikat Bhattacharjee, Regional Centre for Biotechnology, India

                *Correspondence: Andrea Pitzschke, Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, Vienna A-1190, Austria e-mail: andrea.pitzschke@ 123456boku.ac.at

                This article was submitted to Plant-Microbe Interaction, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2013.00519
                3866890
                24391655
                4f5c1ed0-5afb-487e-b127-bd8986528b9c
                Copyright © 2013 Pitzschke.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 September 2013
                : 02 December 2013
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 120, Pages: 12, Words: 10466
                Categories
                Plant Science
                Review Article

                Plant science & Botany
                transformation,agrobacterium tumefaciens,plant defense,reactive oxygen species,vip1

                Comments

                Comment on this article