+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Neutrophil Gelatinase-Associated Lipocalin: Ready for Routine Clinical Use? An International Perspective

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Acute kidney injury (AKI) remains a challenge in terms of diagnosis and classification, its morbidity and mortality remaining high in the face of improving clinical protocols. Current clinical criteria use serum creatinine (sCr) and urine output to classify patients. Ongoing research has identified novel biomarkers that may improve the speed and accuracy of patient evaluation and prognostication, yet the route from basic science to clinical practice remains poorly paved. International evidence supporting the use of plasma neutrophil gelatinase-associated lipocalin (NGAL) as a valuable biomarker of AKI and chronic kidney disease (CKD) for a number of clinical scenarios was presented at the 31st International Vicenza Course on Critical Care Nephrology, and these data are detailed in this review. NGAL was shown to be highly useful alongside sCr, urinary output, and other biomarkers in assessing kidney injury; in patient stratification and continuous renal replacement therapy (CRRT) selection in paediatric AKI; in assessing kidney injury in conjunction with sCr in sepsis; in guiding resuscitation protocols in conjunction with brain natriuretic peptide in burn patients; as an early biomarker of delayed graft function and calcineurin inhibitor nephrotoxicity in kidney transplantation from extended criteria donors; as a biomarker of cardiovascular disease and heart failure, and in guiding CRRT selection in the intensive care unit and emergency department. While some applications require further clarification by way of larger randomised controlled trials, NGAL nevertheless demonstrates promise as an independent biological marker with the potential to improve earlier diagnosis and better assessment of risk groups in AKI and CKD. This is a critical element in formulating quick and accurate decisions for individual patients, both in acute scenarios and in long-term care, in order to improve patient prognostics and outcomes.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiorenal syndrome.

          The term cardiorenal syndrome (CRS) increasingly has been used without a consistent or well-accepted definition. To include the vast array of interrelated derangements, and to stress the bidirectional nature of heart-kidney interactions, we present a new classification of the CRS with 5 subtypes that reflect the pathophysiology, the time-frame, and the nature of concomitant cardiac and renal dysfunction. CRS can be generally defined as a pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction of 1 organ may induce acute or chronic dysfunction of the other. Type 1 CRS reflects an abrupt worsening of cardiac function (e.g., acute cardiogenic shock or decompensated congestive heart failure) leading to acute kidney injury. Type 2 CRS comprises chronic abnormalities in cardiac function (e.g., chronic congestive heart failure) causing progressive chronic kidney disease. Type 3 CRS consists of an abrupt worsening of renal function (e.g., acute kidney ischemia or glomerulonephritis) causing acute cardiac dysfunction (e.g., heart failure, arrhythmia, ischemia). Type 4 CRS describes a state of chronic kidney disease (e.g., chronic glomerular disease) contributing to decreased cardiac function, cardiac hypertrophy, and/or increased risk of adverse cardiovascular events. Type 5 CRS reflects a systemic condition (e.g., sepsis) causing both cardiac and renal dysfunction. Biomarkers can contribute to an early diagnosis of CRS and to a timely therapeutic intervention. The use of this classification can help physicians characterize groups of patients, provides the rationale for specific management strategies, and allows the design of future clinical trials with more accurate selection and stratification of the population under investigation.
            • Record: found
            • Abstract: found
            • Article: not found

            Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis.

            Procalcitonin is widely reported as a useful biochemical marker to differentiate sepsis from other non-infectious causes of systemic inflammatory response syndrome. In this systematic review, we estimated the diagnostic accuracy of procalcitonin in sepsis diagnosis in critically ill patients. 18 studies were included in the review. Overall, the diagnostic performance of procalcitonin was low, with mean values of both sensitivity and specificity being 71% (95% CI 67-76) and an area under the summary receiver operator characteristic curve of 0.78 (95% CI 0.73-0.83). Studies were grouped into phase 2 studies (n=14) and phase 3 studies (n=4) by use of Sackett and Haynes' classification. Phase 2 studies had a low pooled diagnostic odds ratio of 7.79 (95% CI 5.86-10.35). Phase 3 studies showed significant heterogeneity because of variability in sample size (meta-regression coefficient -0.592, p=0.017), with diagnostic performance upwardly biased in smaller studies, but moving towards a null effect in larger studies. Procalcitonin cannot reliably differentiate sepsis from other non-infectious causes of systemic inflammatory response syndrome in critically ill adult patients. The findings from this study do not lend support to the widespread use of the procalcitonin test in critical care settings.
              • Record: found
              • Abstract: found
              • Article: not found

              Delayed graft function in the kidney transplant.

              Acute kidney injury occurs with kidney transplantation and too frequently progresses to the clinical diagnosis of delayed graft function (DGF). Poor kidney function in the first week of graft life is detrimental to the longevity of the allograft. Challenges to understand the root cause of DGF include several pathologic contributors derived from the donor (ischemic injury, inflammatory signaling) and recipient (reperfusion injury, the innate immune response and the adaptive immune response). Progressive demand for renal allografts has generated new organ categories that continue to carry high risk for DGF for deceased donor organ transplantation. New therapies seek to subdue the inflammatory response in organs with high likelihood to benefit from intervention. Future success in suppressing the development of DGF will require a concerted effort to anticipate and treat tissue injury throughout the arc of the transplantation process. ©2011 The Authors Journal compilation © 2011 The American Society of Transplantation and the American Society of Transplant Surgeons.

                Author and article information

                Blood Purif
                Blood Purification
                S. Karger AG
                October 2014
                03 July 2014
                : 37
                : 4
                : 271-285
                aDepartment of Nephrology, Dialysis and Transplantation, International Renal Research Institute, San Bortolo Hospital, Vicenza, bNephrology, Dialysis and Antonio Vercellone Kidney Transplantation Unit, University of Torino, Torino, and cUniversity La Sapienza, Rome, Italy; dHôpitaux Universitaires St-Louis-Lariboisière, APHP, Université Diderot-Paris, Paris, France; eUniversity of Cincinnati College of Medicine and Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, fUniversity of California Davis School of Medicine, Sacramento, Calif., and gDivision of Nephrology-Hypertension, University of California, San Diego, Calif., USA; hKonkuk University School of Medicine, Seoul, Korea; iUniversity Medical Center Groningen, Groningen, The Netherlands; jDivision of Critical Care Medicine, University of Alberta, Edmonton, Alta., Canada; kDepartment of Renal Medicine, St James's University Hospital, Leeds, UK
                Author notes
                *Dr. Claudio Ronco, Department of Nephrology, San Bortolo Hospital, Viale Rodolfi 37, IT-36100 Vicenza (Italy), E-Mail
                360689 Blood Purif 2014;37:271-285
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 13, Pages: 15
                In-Depth Review


                Comment on this article