13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Responsive Hydrogels from the Intramolecular Folding and Self-Assembly of a Designed Peptide

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A general peptide design is presented that links the pH-dependent intramolecular folding of beta-hairpin peptides to their propensity to self-assemble, affording hydrogels rich in beta-sheet. Chemical responsiveness has been specifically engineered into the material by linking intramolecular folding to changes in solution pH, and mechanical responsiveness, by linking hydrogelation to self-assembly. Circular dichroic and infrared spectroscopies show that at low pH individual peptides are unstructured, affording a low-viscosity aqueous solution. Under basic conditions, intramolecular folding takes place, affording amphiphilic beta-hairpins that intermolecularly self-assemble. Rheology shows that the resulting hydrogel is rigid but is shear-thinning. However, quick mechanical strength recovery after cessation of shear is observed due to the inherent self-assembled nature of the scaffold. Characterization of the gelation process, from the molecular level up through the macroscopic properties of the material, suggests that by linking the intramolecular folding of small designed peptides to their ability to self-assemble, responsive materials can be prepared. Cryo-transmission electron and laser scanning confocal microscopies reveal a water-filled porous scaffold on both the nano- and microscale. The environmental responsiveness, morphology, and peptidic nature make this hydrogel a possible material candidate for biomedical and engineering technology.

          Related collections

          Author and article information

          Journal
          Journal of the American Chemical Society
          J. Am. Chem. Soc.
          American Chemical Society (ACS)
          0002-7863
          1520-5126
          December 2002
          December 2002
          : 124
          : 50
          : 15030-15037
          Article
          10.1021/ja027993g
          12475347
          4f6aad76-7f3f-483a-999b-e7b8feb5f3cf
          © 2002
          Product
          Self URI (article page): https://pubs.acs.org/doi/10.1021/ja027993g

          Comments

          Comment on this article