5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum key distribution over 658 km fiber with distributed vibration sensing

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Twin-field quantum key distribution (TF-QKD) promises ultra-long secure key distribution which surpasses the rate distance limit and can reduce the number of the trusted nodes in long-haul quantum network. Tremendous efforts have been made towards implementation of TF-QKD, among which, the secure key with finite size analysis can distribute more than 500 km in the lab and in the field. Here, we demonstrate the sending-or-not-sending TF-QKD experimentally, achieving a secure key distribution with finite size analysis over 658 km ultra-low-loss optical fiber, improve the secure distance record by around 100 km. Meanwhile, in a TF-QKD system, any phase fluctuation due to temperature variation and ambient variation during the channel must be recorded and compensated, and all these phase information can then be utilized to sense the channel vibration perturbations. With our QKD system, we recovered the external vibrational perturbations on the fiber generated by an artificial vibroseis and successfully located the perturbation position with a resolution better than 1 km. Our results not only set a new distance record of QKD, but also demonstrate that the redundant information of TF-QKD can be used for remote sensing of the channel vibration, which can find applications in earthquake detection and landslide monitoring besides secure communication.

          Related collections

          Author and article information

          Journal
          22 October 2021
          Article
          2110.11671
          4f72aaf5-da40-46ab-8dd5-b4b0f8adc92d

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          20 pages, 4 figures and 1 table
          quant-ph

          Quantum physics & Field theory
          Quantum physics & Field theory

          Comments

          Comment on this article