44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Prediction of continuous B-cell epitopes in an antigen using recurrent neural network

        ,
      Proteins: Structure, Function, and Bioinformatics
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          B-cell epitopes play a vital role in the development of peptide vaccines, in diagnosis of diseases, and also for allergy research. Experimental methods used for characterizing epitopes are time consuming and demand large resources. The availability of epitope prediction method(s) can rapidly aid experimenters in simplifying this problem. The standard feed-forward (FNN) and recurrent neural network (RNN) have been used in this study for predicting B-cell epitopes in an antigenic sequence. The networks have been trained and tested on a clean data set, which consists of 700 non-redundant B-cell epitopes obtained from Bcipep database and equal number of non-epitopes obtained randomly from Swiss-Prot database. The networks have been trained and tested at different input window length and hidden units. Maximum accuracy has been obtained using recurrent neural network (Jordan network) with a single hidden layer of 35 hidden units for window length of 16. The final network yields an overall prediction accuracy of 65.93% when tested by fivefold cross-validation. The corresponding sensitivity, specificity, and positive prediction values are 67.14, 64.71, and 65.61%, respectively. It has been observed that RNN (JE) was more successful than FNN in the prediction of B-cell epitopes. The length of the peptide is also important in the prediction of B-cell epitopes from antigenic sequences. The webserver ABCpred is freely available at www.imtech.res.in/raghava/abcpred/. Proteins 2006. (c) 2006 Wiley-Liss, Inc.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Learning representations by back-propagating errors

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A semi-empirical method for prediction of antigenic determinants on protein antigens.

            Analysis of data from experimentally determined antigenic sites on proteins has revealed that the hydrophobic residues Cys, Leu and Val, if they occur on the surface of a protein, are more likely to be a part of antigenic sites. A semi-empirical method which makes use of physicochemical properties of amino acid residues and their frequencies of occurrence in experimentally known segmental epitopes was developed to predict antigenic determinants on proteins. Application of this method to a large number of proteins has shown that our method can predict antigenic determinants with about 75% accuracy which is better than most of the known methods. This method is based on a single parameter and thus very simple to use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000.

              SWISS-PROT is a curated protein sequence database which strives to provide a high level of annotation (such as the description of the function of a protein, its domains structure, post-translational modifications, variants, etc.), a minimal level of redundancy and high level of integration with other databases. Recent developments of the database include format and content enhancements, cross-references to additional databases, new documentation files and improvements to TrEMBL, a computer-annotated supplement to SWISS-PROT. TrEMBL consists of entries in SWISS-PROT-like format derived from the translation of all coding sequences (CDSs) in the EMBL Nucleotide Sequence Database, except the CDSs already included in SWISS-PROT. We also describe the Human Proteomics Initiative (HPI), a major project to annotate all known human sequences according to the quality standards of SWISS-PROT. SWISS-PROT is available at: http://www.expasy.ch/sprot/ and http://www.ebi.ac.uk/swissprot/
                Bookmark

                Author and article information

                Journal
                Proteins: Structure, Function, and Bioinformatics
                Proteins
                Wiley
                08873585
                October 01 2006
                August 07 2006
                : 65
                : 1
                : 40-48
                Article
                10.1002/prot.21078
                16894596
                4f7bc332-3276-4def-90a8-6caa81383e5d
                © 2006

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article