30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complete Genomic Analysis of a Salmonella enterica Serovar Typhimurium Isolate Cultured From Ready-to-Eat Pork in China Carrying One Large Plasmid Containing mcr-1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One mcr-1-carrying ST34-type Salmonella Typhimurium WW012 was cultured from 3,200 ready-to-eat (RTE) pork samples in 2014 in China. Broth dilution method was applied to obtain the antimicrobial susceptibility of Salmonella Typhimurium WW012. Broth matting assays were carried out to detect transferability of this phenotype and whole-genome sequencing was performed to analyze its genomic characteristic. Thirty out of 3,200 RTE samples were positive for Salmonella and the three most frequent serotypes were identified as S. Derby ( n = 8), S. Typhimurium ( n = 6), and S. Enteritidis ( n = 6). One S. Typhimurium isolate ( S. Typhimurium WW012) cultured from RTE prepared pork was found to contain the mcr-1 gene. S. Typhimurium WW012 expressed a level of high resistance to seven different antimicrobial compounds in addition to colistin (MIC = 8 mg/L). A single plasmid, pWW012 (151,609-bp) was identified and found to be of an IncHI2/HI2A type that encoded a mcr-1 gene along with six additional antimicrobial resistance genes. Plasmid pWW012 contained an IS 30- mcr-1- orf- orf-IS 30 composite transposon that can be successfully transferred to Escherichia coli J53. When assessed further, the latter demonstrated considerable similarity to three plasmids pHYEC7- mcr-1, pSCC4, and pHNSHP45-2, respectively. Furthermore, plasmid pWW012 also contained a multidrug resistance (MDR) genetic structure IS 26- aadA2- cmlA2- aadA1-IS 406- sul3-IS 26- dfrA12- aadA2-IS 26, which showed high similarity to two plasmids, pHNLDF400 and pHNSHP45-2, respectively. Moreover, genes mapping to the chromosome (4,991,167-bp) were found to carry 28 mutations, related to two component regulatory systems ( pmrAB, phoPQ) leading to modifications of lipid A component of the lipopolysaccharide structure. Additionally, one mutation (D87N) in the quinolone resistance determining region (QRDR) gene of gyrA was identified in this mcr-1 harboring S. Typhimurium. In addition, various virulence factors and heavy metal resistance-encoding genes were also identified on the genome of S. Typhimurium WW012. This is the first report of the complete nucleotide sequence of mcr-1-carrying MDR S. Typhimurium strain from RTE pork in China.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The global burden of nontyphoidal Salmonella gastroenteritis.

          To estimate the global burden of nontyphoidal Salmonella gastroenteritis, we synthesized existing data from laboratory-based surveillance and special studies, with a hierarchical preference to (1) prospective population-based studies, (2) "multiplier studies," (3) disease notifications, (4) returning traveler data, and (5) extrapolation. We applied incidence estimates to population projections for the 21 Global Burden of Disease regions to calculate regional numbers of cases, which were summed to provide a global number of cases. Uncertainty calculations were performed using Monte Carlo simulation. We estimated that 93.8 million cases (5th to 95th percentile, 61.8-131.6 million) of gastroenteritis due to Salmonella species occur globally each year, with 155,000 deaths (5th to 95th percentile, 39,000-303,000 deaths). Of these, we estimated 80.3 million cases were foodborne. Salmonella infection represents a considerable burden in both developing and developed countries. Efforts to reduce transmission of salmonellae by food and other routes must be implemented on a global scale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18.

            Salmonella enterica serovar Typhi (S. typhi) is the aetiological agent of typhoid fever, a serious invasive bacterial disease of humans with an annual global burden of approximately 16 million cases, leading to 600,000 fatalities. Many S. enterica serovars actively invade the mucosal surface of the intestine but are normally contained in healthy individuals by the local immune defence mechanisms. However, S. typhi has evolved the ability to spread to the deeper tissues of humans, including liver, spleen and bone marrow. Here we have sequenced the 4,809,037-base pair (bp) genome of a S. typhi (CT18) that is resistant to multiple drugs, revealing the presence of hundreds of insertions and deletions compared with the Escherichia coli genome, ranging in size from single genes to large islands. Notably, the genome sequence identifies over two hundred pseudogenes, several corresponding to genes that are known to contribute to virulence in Salmonella typhimurium. This genetic degradation may contribute to the human-restricted host range for S. typhi. CT18 harbours a 218,150-bp multiple-drug-resistance incH1 plasmid (pHCM1), and a 106,516-bp cryptic plasmid (pHCM2), which shows recent common ancestry with a virulence plasmid of Yersinia pestis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice.

              Salmonella enterica serotype Typhimurium causes human infections that can frequently be traced back through the food chain to healthy livestock whose intestine is colonized by the pathogen. Little is known about the genes important for intestinal carriage of S. enterica serotype Typhimurium in vertebrate animals. Here we characterized the role of 10 fimbrial operons, agf, fim, lpf, pef, bcf, stb, stc, std, stf, and sth, using competitive infection experiments performed in genetically susceptible (BALB/c) and resistant (CBA) mice. Deletion of agfAB, fimAICDHF, lpfABCDE, pefABCDI, bcfABCDEFG, stbABCD, stcABCD, stdAB, stfACDEFG, or sthABCDE did not reduce the ability of S. enterica serotype Typhimurium to colonize the spleen and cecum of BALB/c mice 5 days after infection. Similarly, deletion of agfAB, fimAICDHF, pefABCDI, and stfACDEFG did not result in reduced recovery of S. enterica serotype Typhimurium from fecal samples collected from infected CBA mice over a 30-day time period. However, S. enterica serotype Typhimurium strains carrying deletions in lpfABCDE, bcfABCDEFG, stbABCD, stcABCD, stdAB, or sthABCDE were recovered at significantly reduced numbers from the feces of CBA mice. There was a good correlation (R(2) = 0.9626) between competitive indices in the cecum and fecal samples of CBA mice at 30 days after infection, suggesting that the recovery of S. enterica serotype Typhimurium from fecal samples closely reflected its ability to colonize the cecum. Collectively, these data show that six fimbrial operons (lpf, bcf, stb, stc, std, and sth) contribute to long-term intestinal carriage of S. enterica serotype Typhimurium in genetically resistant mice.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                27 April 2018
                2018
                : 9
                : 616
                Affiliations
                [1] 1Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment , Beijing, China
                [2] 2College of Veterinary Medicine, South China Agricultural University , Guangzhou, China
                [3] 3Heilongjiang Provincial Center for Disease Control and Prevention , Harbin, China
                [4] 4Institute of Microbiology, University of Agriculture Faisalabad , Faisalabad, Pakistan
                [5] 5UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin , Dublin, Ireland
                [6] 6Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast , Belfast, Ireland
                Author notes

                Edited by: Giovanna Suzzi, Università di Teramo, Italy

                Reviewed by: Haijian Zhou, Chinese Center for Disease Control and Prevention, China; Rong Zhang, Second Affiliated Hospital of Zhejiang University School of Medicine, China; Maria Schirone, Università di Teramo, Italy

                *Correspondence: Fengqin Li, lifengqin@ 123456cfsa.net.cn Séamus Fanning, sfanning@ 123456ucd.ie

                These authors have contributed equally to this work as co-first authors.

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.00616
                5934421
                29755416
                4fa52b51-1b83-46d1-ac59-994bf477c9cd
                Copyright © 2018 Wang, Baloch, Zou, Dong, Peng, Hu, Xu, Yasmeen, Li and Fanning.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 December 2017
                : 16 March 2018
                Page count
                Figures: 1, Tables: 3, Equations: 0, References: 37, Pages: 9, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                mdr salmonella enteric serovar typhimurium,conjugation,mcr-1,phop/q,pmra/b,plasmids,ready-to-eat pork

                Comments

                Comment on this article