7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      The role of intracranial pressure in glaucoma and therapeutic implications

      , , ,
      Eye
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite glaucoma being the second leading cause of blindness globally, its pathogenesis remains incompletely understood. Although intraocular pressure (IOP) contributes to glaucoma, and reducing IOP slows progress of the disease, some patients progress despite normal IOP (NTG). Glaucomatous damage causes characteristic cupping of the optic nerve where it passes through the lamina cribrosa. There is evidence that cerebrospinal fluid (CSF) within the optic nerve sheath has a different composition from CSF surrounding the brain. Furthermore, fluctuations in CSF flow into the optic nerve sheath may be reduced by trabeculae within the sheath, and on standing intracranial pressure (ICP) within the sheath is stabilised at around 3 mmHg due to orbital pressure. Blood pressure has been linked both to glaucoma and ICP. These facts have led some to conclude that ICP does not play a role in glaucoma. However, according to stress formulae and Laplace's Law, stress within the lamina cribrosa is dependent on the forces on either side of it, (IOP and ICP), and its thickness. On lying flat at night, ICP between the brain and optic nerve sheath should equalise. Most evidence suggests ICP is lower in glaucoma than in control groups, and that the lamina cribrosa is thinner and more posteriorly displaced in glaucoma. Subjects who have had ICP reduced have developed signs of glaucoma. This review finds most evidence supports a role for low ICP in the pathogenesis of glaucoma. Caffeine, theophylline and vitamin A may increase ICP, and could be new candidates for an oral treatment.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          The impact of ocular blood flow in glaucoma.

          Two principal theories for the pathogenesis of glaucomatous optic neuropathy (GON) have been described--a mechanical and a vascular theory. Both have been defended by various research groups over the past 150 years. According to the mechanical theory, increased intraocular pressure (IOP) causes stretching of the laminar beams and damage to retinal ganglion cell axons. The vascular theory of glaucoma considers GON as a consequence of insufficient blood supply due to either increased IOP or other risk factors reducing ocular blood flow (OBF). A number of conditions such as congenital glaucoma, angle-closure glaucoma or secondary glaucomas clearly show that increased IOP is sufficient to lead to GON. However, a number of observations such as the existence of normal-tension glaucoma cannot be satisfactorily explained by a pressure theory alone. Indeed, the vast majority of published studies dealing with blood flow report a reduced ocular perfusion in glaucoma patients compared with normal subjects. The fact that the reduction of OBF often precedes the damage and blood flow can also be reduced in other parts of the body of glaucoma patients, indicate that the hemodynamic alterations may at least partially be primary. The major cause of this reduction is not atherosclerosis, but rather a vascular dysregulation, leading to both low perfusion pressure and insufficient autoregulation. This in turn may lead to unstable ocular perfusion and thereby to ischemia and reperfusion damage. This review discusses the potential role of OBF in glaucoma and how a disturbance of OBF could increase the optic nerve's sensitivity to IOP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial.

            Treatments for open-angle glaucoma aim to prevent vision loss through lowering of intraocular pressure, but to our knowledge no placebo-controlled trials have assessed visual function preservation, and the observation periods of previous (unmasked) trials have typically been at least 5 years. We assessed vision preservation in patients given latanoprost compared with those given placebo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis.

              To determine the association between myopia and open-angle glaucoma. Systematic review and meta-analysis of observational studies. Thirteen studies involving 48 161 individuals. Articles published between 1994 and 2010 were identified in PubMed, Embase, and reference lists. Study-specific odds ratios (ORs) were pooled using a random effects model. Odds ratios with 95% confidence intervals (CIs) of myopia as a risk factor for open-angle glaucoma. Data from 11 population-based cross-sectional studies were included in the main analyses. The pooled OR of the association between myopia and glaucoma based on 11 risk estimates was 1.92 (95% CI, 1.54-2.38). On the basis of 7 risk estimates, the pooled ORs of the associations between low myopia (myopia up to -3 D) and glaucoma and between high myopia (≤-3 D myopic) and glaucoma were 1.65 (1.26-2.17) and 2.46 (1.93-3.15), respectively. There was considerable heterogeneity among studies that reported an association between any myopia and glaucoma (I(2)=53%) and low myopia and glaucoma (I(2)=29%), but not for high myopia and glaucoma (I(2)=0%). After omitting studies that contributed significantly to the heterogeneity, the pooled ORs were 1.88 (1.60-2.20) for any myopia and glaucoma and 1.77 (1.41-2.23) for low myopia and glaucoma. Individuals with myopia have an increased risk of developing open-angle glaucoma. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Eye
                Eye
                Springer Science and Business Media LLC
                0950-222X
                1476-5454
                November 27 2019
                Article
                10.1038/s41433-019-0681-y
                7002772
                31776450
                4fa83e55-f6e6-4933-92d2-e96a9d448384
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article