6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Profile of pembrolizumab in the treatment of head and neck squamous cell carcinoma: design development and place in therapy

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Head and neck squamous cell cancer (HNSCC) is the sixth most common malignancy worldwide, and despite advances in cytotoxic, surgical and radiation techniques, outcomes are still poor in those with both locally advanced and metastatic diseases. The need for development of better therapeutics along with a greater understanding of the relationship between the immune system and malignancies has led to a new therapeutic modality, immune modulators, particularly checkpoint inhibitors in HNSCC. It is now well recognized that HNSCC circumvents crucial pathways utilized by the immune system to escape surveillance. These hijacked pathways include impairing tumor antigen presentation machinery and co-opting checkpoint receptors. This understanding has led to the development of monoclonal antibodies targeting checkpoint receptors and has resulted in promising outcomes in HNSCC. This article describes the mechanisms that HNSCC utilizes to escape immune surveillance, clinical impact of checkpoint inhibitors (with a focus on pembrolizumab), ongoing studies, and future directions.

          Related collections

          Most cited references 57

          • Record: found
          • Abstract: found
          • Article: not found

          Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.

           Y Iwai,  M. Ishida,  Y. Tanaka (2002)
          PD-1 is a receptor of the Ig superfamily that negatively regulates T cell antigen receptor signaling by interacting with the specific ligands (PD-L) and is suggested to play a role in the maintenance of self-tolerance. In the present study, we examined possible roles of the PD-1/PD-L system in tumor immunity. Transgenic expression of PD-L1, one of the PD-L, in P815 tumor cells rendered them less susceptible to the specific T cell antigen receptor-mediated lysis by cytotoxic T cells in vitro, and markedly enhanced their tumorigenesis and invasiveness in vivo in the syngeneic hosts as compared with the parental tumor cells that lacked endogenous PD-L. Both effects could be reversed by anti-PD-L1 Ab. Survey of murine tumor lines revealed that all of the myeloma cell lines examined naturally expressed PD-L1. Growth of the myeloma cells in normal syngeneic mice was inhibited significantly albeit transiently by the administration of anti-PD-L1 Ab in vivo and was suppressed completely in the syngeneic PD-1-deficient mice. These results suggest that the expression of PD-L1 can serve as a potent mechanism for potentially immunogenic tumors to escape from host immune responses and that blockade of interaction between PD-1 and PD-L may provide a promising strategy for specific tumor immunotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.

            Vaccination with irradiated B16 melanoma cells expressing either GM-CSF (Gvax) or Flt3-ligand (Fvax) combined with antibody blockade of the negative T-cell costimulatory receptor cytotoxic T-lymphocyte antigen-4 (CTLA-4) promotes rejection of preimplanted tumors. Despite CTLA-4 blockade, T-cell proliferation and cytokine production can be inhibited by the interaction of programmed death-1 (PD-1) with its ligands PD-L1 and PD-L2 or by the interaction of PD-L1 with B7-1. Here, we show that the combination of CTLA-4 and PD-1 blockade is more than twice as effective as either alone in promoting the rejection of B16 melanomas in conjunction with Fvax. Adding alphaPD-L1 to this regimen results in rejection of 65% of preimplanted tumors vs. 10% with CTLA-4 blockade alone. Combination PD-1 and CTLA-4 blockade increases effector T-cell (Teff) infiltration, resulting in highly advantageous Teff-to-regulatory T-cell ratios with the tumor. The fraction of tumor-infiltrating Teffs expressing CTLA-4 and PD-1 increases, reflecting the proliferation and accumulation of cells that would otherwise be anergized. Combination blockade also synergistically increases Teff-to-myeloid-derived suppressor cell ratios within B16 melanomas. IFN-gamma production increases in both the tumor and vaccine draining lymph nodes, as does the frequency of IFN-gamma/TNF-alpha double-producing CD8(+) T cells within the tumor. These results suggest that combination blockade of the PD-1/PD-L1- and CTLA-4-negative costimulatory pathways allows tumor-specific T cells that would otherwise be inactivated to continue to expand and carry out effector functions, thereby shifting the tumor microenvironment from suppressive to inflammatory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In search of the ‘missing self’: MHC molecules and NK cell recognition

              Immunology Today, 11, 237-244
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2017
                31 August 2017
                : 11
                : 2537-2549
                Affiliations
                [1 ]Division of Hematology/Oncology, Department of Medicine, University of Cincinnati
                [2 ]University of Cincinnati Cancer Institute, Cincinnati, OH, USA
                Author notes
                Correspondence: Nooshin Hashemi-Sadraei, Division of Hematology/Oncology, Department of Medicine, University of Cincinnati, Vontz Center for Molecular Studies, ML 0562, 3125 Eden Avenue, Cincinnati, OH 45267, USA, Tel +1 513 558 2158, Fax +1 513 558 2124, Email hashemnn@ 123456ucmail.uc.edu
                Article
                dddt-11-2537
                10.2147/DDDT.S119537
                5587117
                © 2017 Haque et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article