41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The battle against SARS and MERS coronaviruses: Reservoirs and Animal Models

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In humans, infection with the coronavirus, especially the severe acute respiratory syndrome coronavirus ( SARS‐CoV) and the emerging Middle East respiratory syndrome coronavirus ( MERS‐CoV), induces acute respiratory failure, resulting in high mortality. Irregular coronavirus related epidemics indicate that the evolutionary origins of these two pathogens need to be identified urgently and there are still questions related to suitable laboratory animal models. Thus, in this review we aim to highlight key discoveries concerning the animal origin of the virus and summarize and compare current animal models.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.

          A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats.

            Although the finding of severe acute respiratory syndrome coronavirus (SARS-CoV) in caged palm civets from live animal markets in China has provided evidence for interspecies transmission in the genesis of the SARS epidemic, subsequent studies suggested that the civet may have served only as an amplification host for SARS-CoV. In a surveillance study for CoV in noncaged animals from the wild areas of the Hong Kong Special Administration Region, we identified a CoV closely related to SARS-CoV (bat-SARS-CoV) from 23 (39%) of 59 anal swabs of wild Chinese horseshoe bats (Rhinolophus sinicus) by using RT-PCR. Sequencing and analysis of three bat-SARS-CoV genomes from samples collected at different dates showed that bat-SARS-CoV is closely related to SARS-CoV from humans and civets. Phylogenetic analysis showed that bat-SARS-CoV formed a distinct cluster with SARS-CoV as group 2b CoV, distantly related to known group 2 CoV. Most differences between the bat-SARS-CoV and SARS-CoV genomes were observed in the spike genes, ORF 3 and ORF 8, which are the regions where most variations also were observed between human and civet SARS-CoV genomes. In addition, the presence of a 29-bp insertion in ORF 8 of bat-SARS-CoV genome, not in most human SARS-CoV genomes, suggests that it has a common ancestor with civet SARS-CoV. Antibody against recombinant bat-SARS-CoV nucleocapsid protein was detected in 84% of Chinese horseshoe bats by using an enzyme immunoassay. Neutralizing antibody to human SARS-CoV also was detected in bats with lower viral loads. Precautions should be exercised in the handling of these animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus.

              Recently, we reported the discovery of three novel coronaviruses, bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus HKU13, which were identified as representatives of a novel genus, Deltacoronavirus, in the subfamily Coronavirinae. In this territory-wide molecular epidemiology study involving 3,137 mammals and 3,298 birds, we discovered seven additional novel deltacoronaviruses in pigs and birds, which we named porcine coronavirus HKU15, white-eye coronavirus HKU16, sparrow coronavirus HKU17, magpie robin coronavirus HKU18, night heron coronavirus HKU19, wigeon coronavirus HKU20, and common moorhen coronavirus HKU21. Complete genome sequencing and comparative genome analysis showed that the avian and mammalian deltacoronaviruses have similar genome characteristics and structures. They all have relatively small genomes (25.421 to 26.674 kb), the smallest among all coronaviruses. They all have a single papain-like protease domain in the nsp3 gene; an accessory gene, NS6 open reading frame (ORF), located between the M and N genes; and a variable number of accessory genes (up to four) downstream of the N gene. Moreover, they all have the same putative transcription regulatory sequence of ACACCA. Molecular clock analysis showed that the most recent common ancestor of all coronaviruses was estimated at approximately 8100 BC, and those of Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus were at approximately 2400 BC, 3300 BC, 2800 BC, and 3000 BC, respectively. From our studies, it appears that bats and birds, the warm blooded flying vertebrates, are ideal hosts for the coronavirus gene source, bats for Alphacoronavirus and Betacoronavirus and birds for Gammacoronavirus and Deltacoronavirus, to fuel coronavirus evolution and dissemination.
                Bookmark

                Author and article information

                Contributors
                bllmsl@aliyun.com
                Journal
                Animal Model Exp Med
                Animal Model Exp Med
                10.1002/(ISSN)2576-2095
                AME2
                Animal Models and Experimental Medicine
                John Wiley and Sons Inc. (Hoboken )
                2096-5451
                2576-2095
                28 July 2018
                June 2018
                : 1
                : 2 ( doiID: 10.1002/ame2.2018.1.issue-2 )
                : 125-133
                Affiliations
                [ 1 ] Institute of Laboratory Animal Sciences Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center Peking Union Medical College (PUMC) Key Laboratory of Human Disease Comparative Medicine Ministry of Health Key Laboratory for Animal Models of Emerging and Reemerging Infectious Beijing China
                Author notes
                [*] [* ] Correspondence

                Lin‐lin Bao, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.

                Email: bllmsl@ 123456aliyun.com

                Article
                AME212017
                10.1002/ame2.12017
                6388065
                30891557
                4fbea81f-0896-4b15-a51c-92acd2d36b2c
                © 2018 The Authors. Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 28 February 2018
                : 24 April 2018
                Page count
                Figures: 0, Tables: 1, Pages: 9, Words: 6325
                Funding
                Funded by: National Key Research and Development Project of China
                Award ID: 2016YFD0500304
                Funded by: CAMS Innovation Fund for Medical Sciences
                Award ID: 2016‐I2M‐1‐014\2016‐12M‐006
                Funded by: Chinese National Major S & T Project
                Award ID: 2017ZX10304402‐001‐003
                Categories
                Review Article
                Review Articles
                Custom metadata
                2.0
                ame212017
                June 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.6.0 mode:remove_FC converted:25.02.2019

                animal models,coronaviruses,reservoirs,the middle east respiratory syndrome (canonical form),the severe acute respiratory syndrome

                Comments

                Comment on this article