4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Brain Glycogen in Supporting Physiological Function

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glycogen is present in the mammalian brain but occurs at concentrations so low it is unlikely to act as a conventional energy reserve. Glycogen has the intriguing feature of being located exclusively in astrocytes, but its presence benefits neurones, suggesting that glycogen is metabolized to a conduit that is transported between the glia and neural elements. In the rodent optic nerve model glycogen supports axon conduction in the form of lactate to supplement axonal metabolism during aglycemia, hypoglycemia and during periods of increased energy demand under normoglycemic conditions. In the hippocampus glycogen plays a vital role in supplying the neurones with lactate during memory formation. The physiological processes that glycogen supports, such as learning and memory, imply an inclusive and vital role in supporting physiological brain functions.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.

          1. The after-effects of repetitive stimulation of the perforant path fibres to the dentate area of the hippocampal formation have been examined with extracellular micro-electrodes in rabbits anaesthetized with urethane.2. In fifteen out of eighteen rabbits the population response recorded from granule cells in the dentate area to single perforant path volleys was potentiated for periods ranging from 30 min to 10 hr after one or more conditioning trains at 10-20/sec for 10-15 sec, or 100/sec for 3-4 sec.3. The population response was analysed in terms of three parameters: the amplitude of the population excitatory post-synaptic potential (e.p.s.p.), signalling the depolarization of the granule cells, and the amplitude and latency of the population spike, signalling the discharge of the granule cells.4. All three parameters were potentiated in 29% of the experiments; in other experiments in which long term changes occurred, potentiation was confined to one or two of the three parameters. A reduction in the latency of the population spike was the commonest sign of potentiation, occurring in 57% of all experiments. The amplitude of the population e.p.s.p. was increased in 43%, and of the population spike in 40%, of all experiments.5. During conditioning at 10-20/sec there was massive potentiation of the population spike (;frequency potentiation'). The spike was suppressed during stimulation at 100/sec. Both frequencies produced long-term potentiation.6. The results suggest that two independent mechanisms are responsible for long-lasting potentiation: (a) an increase in the efficiency of synaptic transmission at the perforant path synapses; (b) an increase in the excitability of the granule cell population.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Lactate in the brain: from metabolic end-product to signalling molecule

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glucose transporters in the 21st Century.

              The ability to take up and metabolize glucose at the cellular level is a property shared by the vast majority of existing organisms. Most mammalian cells import glucose by a process of facilitative diffusion mediated by members of the Glut (SLC2A) family of membrane transport proteins. Fourteen Glut proteins are expressed in the human and they include transporters for substrates other than glucose, including fructose, myoinositol, and urate. The primary physiological substrates for at least half of the 14 Glut proteins are either uncertain or unknown. The well-established glucose transporter isoforms, Gluts 1-4, are known to have distinct regulatory and/or kinetic properties that reflect their specific roles in cellular and whole body glucose homeostasis. Separate review articles on many of the Glut proteins have recently appeared in this journal. Here, we provide a very brief summary of the known properties of the 14 Glut proteins and suggest some avenues of future investigation in this area.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                01 November 2019
                2019
                : 13
                : 1176
                Affiliations
                [1] 1School of Life Sciences, University of Nottingham , Nottingham, United Kingdom
                [2] 2Department of Neurology, University of Washington , Seattle, WA, United States
                Author notes

                Edited by: Avital Schurr, University of Louisville, United States

                Reviewed by: Mauro DiNuzzo, Independent Researcher, Rome, Italy; Karen P. Briski, University of Louisiana at Monroe, United States

                *Correspondence: Angus M. Brown, ambrown@ 123456nottingham.ac.uk

                This article was submitted to Neuroenergetics, Nutrition and Brain Health, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.01176
                6842925
                31749677
                4fc610b6-dfa4-4b25-b63b-a9aa7545b37c
                Copyright © 2019 Rich, Harris and Brown.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 July 2019
                : 17 October 2019
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 93, Pages: 13, Words: 0
                Funding
                Funded by: University of Nottingham 10.13039/501100000837
                Categories
                Neuroscience
                Review

                Neurosciences
                glucose,lactate,glycogen,optic nerve,memory
                Neurosciences
                glucose, lactate, glycogen, optic nerve, memory

                Comments

                Comment on this article