4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Studies into the formation of PBDEs and PBDD/Fs in the iron ore sintering process

      , ,  
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Toxic effects of brominated flame retardants in man and in wildlife.

          Brominated flame retardants (BFRs) are ubiquitous industrial chemicals, and many of them are produced in large volumes. Due to this fact, several BFRs are found in quantifiable levels in wildlife, as well as in humans. However, we are still lacking information on the effects of BFR in wildlife and, especially, in man. This review summarises the biological effects of polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A (TBBPA) and derivates, hexabromocyclododecane (HBCD) and polybrominated biphenyls (PBBs), however excluding other aspects such as environmental levels. These BFR groups were selected because of a large volume production (PBDEs, TBBPA and derivates), and availability of some toxicity data in spite of much lower production volumes (HBCD and PBBs). In addition, the increase in levels of PBDEs in human (breast milk) and wildlife samples during later time made it especially interesting to include this BFR group. PBDES: The commercial PBDE products predominantly consist of so-called penta-, octa- and decabromodiphenyl ether products. Each product consists of a rather narrow range of congeners and is named after the dominating congener as regards the bromination pattern. Generally, the PentaBDEs seem to cause adverse effects at the comparably lowest dose, whereas much higher doses were needed for effects of the DecaBDEs. The critical effects of PentaBDEs are those on neurobehavioural development (from 0.6 mg/kg body weight) and, at somewhat higher dose, thyroid hormone levels in rats and mice, of OctaBDEs on fetal toxicity/teratogenicity in rats and rabbits (from 2 mg/kg body weight), and of DecaBDEs on thyroid, liver and kidney morphology in adult animals (from 80 mg/kg body weight). Carcinogenicity studies, only performed for DecaBDEs, show some effects at very high levels, and IARC (1990) evaluates DecaBDEs not classifiable as to its carcinogenicity to humans. TBBPA: The toxicity of TBBPA in the experimental in vivo studies is suggested to be low. In most reported studies, only doses in g/kg body weight were effective, but at least one study suggested renal effects at around 250 mg/kg body weight. Although difficult to include and interpret in a quantitative risk assessment, the in vitro effects on immunological and thyroid hormones, as well as binding to erythrocytes should be noted. Before a solid standpoint could be reached on TBBPA toxicity additional studies must be performed. This statement is even more valid regarding the TBBPA derivates, where there is an almost complete lack of toxicity data. HBCD: Also in the case of HBCD, relevant toxicity studies are lacking. Based on the present animal studies, a critical effect is seen in the liver and on thyroid hormones (LOAEL 100 mg/kg body weight/day). However, in a recent short paper behavioural effects in mice pups were observed already at 0.9 mg/kg body weight, and behavioural effects may be a sensitive endpoint for HBCD, as well as for other BFRs. PBBS: Due to the Michigan accident in 1973-1974, many toxicity studies on PBBs are available. The critical experimental effects are those on reproduction and carcinogenicity, and a NOAEL of 0.15 mg/kg body weight/day could be suggested based on the cancer effects. In man no unequivocal effects have been observed, although in some studies neurological and musculoskeletal symptoms were suggested. Based on the carcinogenic effects in animals, a human TDI of 0.15 microg/kg body weight has been presented. To conclude, the toxicity data are almost entirely based on experimental models. There are differences among the BFR groups, as well as within these groups, both regarding type of toxic effect and at what dose it appears. As BFRs will continue to appear both in industrial applications and, even if the production has ceased, in our environment, there is a continued need for effects studies on BFRs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures.

            Polybrominated diphenyl ethers (PBDEs) have been widely used to flame-retard products common in homes and the workplace, and subsequently, they have become widely dispersed in the environment. Detailed compositional knowledge of these complex PBDE mixtures is crucial to a fuller understanding of their toxicological potencies and environmental fate due to selective congener biomagnification, degradation, and transport. Utilizing recenttechnical enhancements and newly available commercial standards, we developed a method capable of analyzing a larger suite of mono- through deca-BDEs. We then characterized the congener composition of six common technical flame-retardant mixtures: two penta-BDE products (DE-71 and Bromkal 70-5DE) two octa-BDE products (DE-79 and Bromkal 79-8DE) and two deca-BDE products (Saytex 102E and Bromkal 82-0DE). PBDEs were analyzed by gas chromatography/mass spectrometry (GC/MS). Structural conformations based on fragmentation patterns and molecular ions were established by electron-capture negative ionization (ECNI) and electron ionization (El). Sixty-four commercially available PBDE standards were chromato-graphed on two GC columns (DB-1HT and DB-5HT) and relative retention indexes (RRI) calculated. Thirty-nine PBDEs were identified in these products, 29 at concentrations >0.02% by weight. Of these, 12 previously unreported congeners have been confirmed as commercial mixture components. Four of these congeners were detected >0.02% w/w (BDE-144, -171, -180, and -201) and three (BDE-75, -184, and -194) at <0.02%. Five other congeners (four <0.02% by weight) were tentatively identified based on their molecular ion and ECNI fragmentation in the absence of corresponding analytical standards.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)

                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                July 2014
                July 2014
                : 485-486
                :
                : 497-507
                Article
                10.1016/j.scitotenv.2014.03.093
                4fd1c666-af73-4222-b1a4-112899a123de
                © 2014
                History

                Comments

                Comment on this article