6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Processes Implicated in Human Age-Related Nuclear Cataract

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human age-related nuclear cataract is commonly characterized by four biochemical features that involve modifications to the structural proteins that constitute the bulk of the lens: coloration, oxidation, insolubility, and covalent cross-linking. Each of these is progressive and increases as the cataract worsens. Significant progress has been made in understanding the origin of the factors that underpin the loss of lens transparency. Of these four hallmarks of cataract, it is protein-protein cross-linking that has been the most intransigent, and it is only recently, with the advent of proteomic methodology, that mechanisms are being elucidated. A diverse range of cross-linking processes involving several amino acids have been uncovered. Although other hypotheses for the etiology of cataract have been advanced, it is likely that spontaneous decomposition of the structural proteins of the lens, which do not turn over, is responsible for the age-related changes to the properties of the lens and, ultimately, for cataract. Cataract may represent the first and best characterized of a number of human age-related diseases where spontaneous protein modification leads to ongoing deterioration and, ultimately, a loss of tissue function.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found

          A review on Alzheimer's disease pathophysiology and its management: an update.

          Alzheimer's disease acknowledged as progressive multifarious neurodegenerative disorder, is the leading cause of dementia in late adult life. Pathologically it is characterized by intracellular neurofibrillary tangles and extracellular amyloidal protein deposits contributing to senile plaques. Over the last two decades, advances in the field of pathogenesis have inspired the researchers for the investigation of novel pharmacological therapeutics centered more towards the pathophysiological events of the disease. Currently available treatments i.e. acetylcholinesterase inhibitors (rivastigmine, galantamine, donepezil) and N-methyl d-aspartate receptor antagonist (memantine) contribute minimal impact on the disease and target late aspects of the disease. These drugs decelerate the progression of the disease, provide symptomatic relief but fail to achieve a definite cure. While the neuropathological features of Alzheimer's disease are recognized but the intricacies of the mechanism have not been clearly defined. This lack of understanding regarding the pathogenic process may be the likely reason for the non-availability of effective treatment which can prevent onset and progression of the disease. Owing to the important progress in the field of pathophysiology in the last couple of years, new therapeutic targets are available that should render the underlying disease process to be tackled directly. In this review, authors will discusses the different aspects of pathophysiological mechanisms behind Alzheimer's disease and its management through conventional drug therapy, including modern investigational therapeutic strategies, recently completed and ongoing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alpha-crystallin can function as a molecular chaperone.

            J. Horwitz (1992)
            The alpha-crystallins (alpha A and alpha B) are major lens structural proteins of the vertebrate eye that are related to the small heat shock protein family. In addition, crystallins (especially alpha B) are found in many cells and organs outside the lens, and alpha B is overexpressed in several neurological disorders and in cell lines under stress conditions. Here I show that alpha-crystallin can function as a molecular chaperone. Stoichiometric amounts of alpha A and alpha B suppress thermally induced aggregation of various enzymes. In particular, alpha-crystallin is very efficient in suppressing the thermally induced aggregation of beta- and gamma-crystallins, the two other major mammalian structural lens proteins. alpha-Crystallin was also effective in preventing aggregation and in refolding guanidine hydrochloride-denatured gamma-crystallin, as judged by circular dichroism spectroscopy. My results thus indicate that alpha-crystallin refracts light and protects proteins from aggregation in the transparent eye lens and that in nonlens cells alpha-crystallin may have other functions in addition to its capacity to suppress aggregation of proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Age-related nuclear cataract-oxidation is the key.

              Age is by far the biggest risk factor for cataract, and it is sometimes assumed that cataract is simply an amplification of this aging process. This appears not to be the case, since the lens changes associated with aging and cataract are distinct. Oxidation is the hallmark of age-related nuclear (ARN) cataract. Loss of protein sulfhydryl groups, and the oxidation of methionine residues, are progressive and increase as the cataract worsens until >90% of cysteine and half the methionine residues are oxidised in the most advanced form. By contrast, there may be no significant oxidation of proteins in the centre of the lens with advancing age, even past age 80. The key factor in preventing oxidation seems to be the concentration of nuclear glutathione (GSH). Provided that nuclear GSH levels can be maintained above 2 mm, it appears that significant protein oxidation and posttranslational modification by reactive small molecules, such as ascorbate or UV filter degradation products, is not observed. Adequate coupling of the metabolically-active cortex, the source of antioxidants such as GSH, to the quiescent nucleus, is crucial especially since it would appear that the cortex remains viable in old lenses, and even possibly in ARN cataract lenses. Therefore it is vital to understand the reason for the onset of the lens barrier. This barrier, which becomes apparent in middle age, acts to impede the flow of small molecules between the cortex and the nucleus. The barrier, rather than nuclear compaction (which is not observed in human lenses), may contribute to the lowered concentration of GSH in the lens nucleus after middle age. By extending the residence time within the lens centre, the barrier also facilitates the decomposition of intrinsically unstable metabolites and may exacerbate the formation of H(2)O(2) in the nucleus. This hypothesis, which is based on the generation of reactive oxygen species and reactive molecules within the nucleus itself, shifts the focus away from theories for cataract that postulated a primary role for oxidants generated outside of the lens. Unfortunately, due to marked variability in the lenses of different species, there appears at present to be no ideal animal model system for studying human ARN cataract.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                Invest Ophthalmol Vis Sci
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                December 2019
                : 60
                : 15
                : 5007-5021
                Affiliations
                [1]Illawarra Health and Medical Research Institute, University of Wollongong, Australia
                Author notes
                Correspondence: Roger J. W. Truscott, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; rjwt@ 123456uow.edu.au .
                Article
                iovs-60-14-13 IOVS-19-27535R2
                10.1167/iovs.19-27535
                7043214
                31791064
                4fe1545a-f463-455e-a33a-8688ebd424f1
                Copyright 2019 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 16 May 2019
                : 18 September 2019
                Categories
                Review

                protein-protein cross-linking,oxidation,temperature,amino acid instability,eye

                Comments

                Comment on this article