8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Virus-Induced Flowering by Apple Latent Spherical Virus Vector: Effective Use to Accelerate Breeding of Grapevine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apple latent spherical virus (ALSV) was successfully used in promoting flowering (virus-induced flowering, VIF) in apple and pear seedlings. In this paper, we report the use of ALSV vectors for VIF in seedlings and in vitro cultures of grapevine. After adjusting experimental conditions for biolistic inoculation of virus RNA, ALSV efficiently infected not only progeny seedlings of Vitis spp. ‘Koshu,’ but also in vitro cultures of V. vinifera ‘Neo Muscat’ without inducing viral symptoms. The grapevine seedlings and in vitro cultures inoculated with an ALSV vector expressing the ‘florigen’ gene (Arabidopsis Flowering locus T, AtFT) started to set floral buds 20–30 days after inoculation. This VIF technology was successfully used to promote flowering and produce grapes with viable seeds in in vitro cultures of F 1 hybrids from crosses between V. ficifolia and V. vinifera and made it possible to analyze the quality of fruits within a year after germination. High-temperature (37 °C) treatment of ALSV-infected grapevine disabled virus movement to newly growing tissue to obtain ALSV-free shoots. Thus, the VIF using ALSV vectors can be used to shorten the generation time of grapevine seedlings and accelerate breeding of grapevines with desired traits.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Virus-induced gene silencing in tomato.

          We have previously demonstrated that a tobacco rattle virus (TRV)-based vector can be used in virus-induced gene silencing (VIGS) to study gene function in Nicotiana benthamiana. Here we show that recombinant TRV infects tomato plants and induces efficient gene silencing. Using this system, we suppressed the PDS, CTR1 and CTR2 genes in tomato. Suppression of CTR1 led to a constitutive ethylene response phenotype and up-regulation of an ethylene response gene, CHITINASE B. This phenotype is similar to Arabidopsis ctr1 mutant plants. We have constructed a modified TRV vector based on the GATEWAY recombination system, allowing restriction- and ligation-free cloning. Our results show that tomato expressed sequence tags (ESTs) can easily be cloned into this modified vector using a single set of primers. Using this vector, we have silenced RbcS and an endogenous gene homologous to the tomato EST cLED3L14. In the future, this modified vector system will facilitate large-scale functional analysis of tomato ESTs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins

            The combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties. Here, we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit crop plants for efficient targeted mutagenesis. We targeted MLO-7, a susceptible gene in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-2, and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore, efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate was analyzed using targeted deep sequencing. Our results demonstrate that direct delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing and paves the way to the generation of DNA-free genome edited grapevine and apple plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Barley stripe mosaic virus-induced gene silencing in a monocot plant.

              RNA silencing of endogenous plant genes can be achieved by virus-mediated, transient expression of homologous gene fragments. This powerful, reverse genetic approach, known as virus-induced gene silencing (VIGS), has been demonstrated only in dicot plant species, where it has become an important tool for functional genomics. Barley stripe mosaic virus (BSMV) is a tripartite, positive-sense RNA virus that infects many agriculturally important monocot species including barley, oats, wheat and maize. To demonstrate VIGS in a monocot host, we modified BSMV to express untranslatable foreign inserts downstream of the gammab gene, in either sense or antisense orientations. Phytoene desaturase (PDS) is required for synthesizing carotenoids, compounds that protect chlorophyll from photo-bleaching. A partial PDS cDNA amplified from barley was 90, 88 and 74% identical to PDS cDNAs from rice, maize and Nicotiana benthamiana, respectively. Barley infected with BSMV expressing barley, rice or maize PDS fragments became photo-bleached and accumulated phytoene (the substrate for PDS) in a manner similar to plants treated with the chemical inhibitor of PDS, norflurazon. In contrast, barley infected with wild-type BSMV, or BSMV expressing either N. benthamiana PDS or antisense green fluorescent protein (GFP), did not photo-bleach or accumulate phytoene. Thus BSMV silencing of the endogenous PDS was homology-dependent. Deletion of the coat protein enhanced the ability of BSMV to silence PDS. This is the first demonstration of VIGS in a monocot, and suggests that BSMV can be used for functional genomics and studies of RNA-silencing mechanisms in monocot plant species.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                07 January 2020
                January 2020
                : 12
                : 1
                : 70
                Affiliations
                [1 ]Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; g0418033@ 123456iwate-u.ac.jp (K.M.); a0116014@ 123456iwate-u.ac.jp (T.K.); cjli_xm@ 123456aliyun.com (C.L.)
                [2 ]Agri-Innovation Center, Iwate University, Morioka 020-8550, Japan; kasajima@ 123456iwate-u.ac.jp (I.K.); nyamagi@ 123456iwate-u.ac.jp (N.Y.)
                [3 ]Experimental Farm, Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan; hyamashita@ 123456yamanashi.ac.jp
                Author notes
                [* ]Correspondence: yoshikawa@ 123456iwate-u.ac.jp ; Tel./Fax: +81-19-621-6150
                Article
                viruses-12-00070
                10.3390/v12010070
                7019355
                31936111
                4fea0cd0-51cb-48d1-9d1f-6638ac6fb63d
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 December 2019
                : 03 January 2020
                Categories
                Article

                Microbiology & Virology
                grapevine,apple latent spherical virus vector,virus-induced flowering,reduced generation time,breeding of grapevine,virus elimination

                Comments

                Comment on this article