8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extra-adrenal glucocorticoid synthesis at epithelial barriers

      , ,
      Genes & Immunity
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Key role of CRF in the skin stress response system.

          The discovery of corticotropin-releasing factor (CRF) or CRH defining the upper regulatory arm of the hypothalamic-pituitary-adrenal (HPA) axis, along with the identification of the corresponding receptors (CRFRs 1 and 2), represents a milestone in our understanding of central mechanisms regulating body and local homeostasis. We focused on the CRF-led signaling systems in the skin and offer a model for regulation of peripheral homeostasis based on the interaction of CRF and the structurally related urocortins with corresponding receptors and the resulting direct or indirect phenotypic effects that include regulation of epidermal barrier function, skin immune, pigmentary, adnexal, and dermal functions necessary to maintain local and systemic homeostasis. The regulatory modes of action include the classical CRF-led cutaneous equivalent of the central HPA axis, the expression and function of CRF and related peptides, and the stimulation of pro-opiomelanocortin peptides or cytokines. The key regulatory role is assigned to the CRFR-1α receptor, with other isoforms having modulatory effects. CRF can be released from sensory nerves and immune cells in response to emotional and environmental stressors. The expression sequence of peptides includes urocortin/CRF→pro-opiomelanocortin→ACTH, MSH, and β-endorphin. Expression of these peptides and of CRFR-1α is environmentally regulated, and their dysfunction can lead to skin and systemic diseases. Environmentally stressed skin can activate both the central and local HPA axis through either sensory nerves or humoral factors to turn on homeostatic responses counteracting cutaneous and systemic environmental damage. CRF and CRFR-1 may constitute novel targets through the use of specific agonists or antagonists, especially for therapy of skin diseases that worsen with stress, such as atopic dermatitis and psoriasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor.

            Glucocorticoids, which are widely used as antiinflammatory agents, downregulate the expression of the interleukin 6 gene and of additional cytokine genes involved in inflammatory responses. Conversely, the transcription factor NF-kappa B, a member of the Rel family of transcription factors, has been implicated in the induction of multiple genes involved in the early processes of immune and inflammatory responses. This prompted us to investigate whether one of the mechanisms by which glucocorticoids exert their antiinflammatory activities is through inhibition of gene activation mediated by NF-kappa B. We report that, in intact cells, activation of the interleukin 6 promoter by a combination of the factor NF-IL6 and the p65 subunit of NF-kappa B is inhibited by dexamethasone (ligand)-activated glucocorticoid receptor. Conversely, activation of the mouse mammary tumor virus promoter by a combination of dexamethasone and glucocorticoid receptor is inhibited by overexpression of p65. Furthermore, we provide evidence for physical association between glucocorticoid receptor and p65 in protein crosslinking and coimmunoprecipitation experiments, using either in vitro translated proteins or those present in cell extracts. These studies suggest that direct interactions between NF-kappa B and glucocorticoid receptor may partly account for the antiinflammatory properties of glucocorticoids in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals.

              In mammals, including humans, nearly all physiological processes are subject to daily oscillations that are governed by a circadian timing system with a complex hierarchical structure. The central pacemaker, residing in the suprachiasmatic nucleus (SCN) of the ventral hypothalamus, is synchronized daily by photic cues transmitted from the retina to SCN neurons via the retinohypothalamic tract. In turn, the SCN must establish phase coherence between self-sustained and cell-autonomous oscillators present in most peripheral cell types. The synchronization signals (Zeitgebers) can be controlled more or less directly by the SCN. In mice and rats, feeding-fasting rhythms, which are driven by the SCN through rest-activity cycles, are the most potent Zeitgebers for the circadian oscillators of peripheral organs. Signaling through the glucocorticoid receptor and the serum response factor also participate in the phase entrainment of peripheral clocks, and these two pathways are controlled by the SCN independently of feeding-fasting rhythms. Body temperature rhythms, governed by the SCN directly and indirectly through rest-activity cycles, are perhaps the most surprising cues for peripheral oscillators. Although the molecular makeup of circadian oscillators is nearly identical in all cells, these oscillators are used for different purposes in the SCN and in peripheral organs.
                Bookmark

                Author and article information

                Journal
                Genes & Immunity
                Genes Immun
                Springer Nature
                1466-4879
                1476-5470
                January 29 2019
                Article
                10.1038/s41435-019-0058-z
                30692606
                4fee45d9-1215-4803-a933-f513572f8a08
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article