12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Acute kidney injury, mortality, length of stay, and costs in hospitalized patients.

          The marginal effects of acute kidney injury on in-hospital mortality, length of stay (LOS), and costs have not been well described. A consecutive sample of 19,982 adults who were admitted to an urban academic medical center, including 9210 who had two or more serum creatinine (SCr) determinations, was evaluated. The presence and degree of acute kidney injury were assessed using absolute and relative increases from baseline to peak SCr concentration during hospitalization. Large increases in SCr concentration were relatively rare (e.g., >or=2.0 mg/dl in 105 [1%] patients), whereas more modest increases in SCr were common (e.g., >or=0.5 mg/dl in 1237 [13%] patients). Modest changes in SCr were significantly associated with mortality, LOS, and costs, even after adjustment for age, gender, admission International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis, severity of illness (diagnosis-related group weight), and chronic kidney disease. For example, an increase in SCr >or=0.5 mg/dl was associated with a 6.5-fold (95% confidence interval 5.0 to 8.5) increase in the odds of death, a 3.5-d increase in LOS, and nearly 7500 dollars in excess hospital costs. Acute kidney injury is associated with significantly increased mortality, LOS, and costs across a broad spectrum of conditions. Moreover, outcomes are related directly to the severity of acute kidney injury, whether characterized by nominal or percentage changes in serum creatinine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mitochondrial permeability transition pore and its role in cell death.

            M Crompton (1999)
            This article reviews the involvement of the mitochondrial permeability transition pore in necrotic and apoptotic cell death. The pore is formed from a complex of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocase and cyclophilin-D (CyP-D) at contact sites between the mitochondrial outer and inner membranes. In vitro, under pseudopathological conditions of oxidative stress, relatively high Ca2+ and low ATP, the complex flickers into an open-pore state allowing free diffusion of low-Mr solutes across the inner membrane. These conditions correspond to those that unfold during tissue ischaemia and reperfusion, suggesting that pore opening may be an important factor in the pathogenesis of necrotic cell death following ischaemia/reperfusion. Evidence that the pore does open during ischaemia/reperfusion is discussed. There are also strong indications that the VDAC-adenine nucleotide translocase-CyP-D complex can recruit a number of other proteins, including Bax, and that the complex is utilized in some capacity during apoptosis. The apoptotic pathway is amplified by the release of apoptogenic proteins from the mitochondrial intermembrane space, including cytochrome c, apoptosis-inducing factor and some procaspases. Current evidence that the pore complex is involved in outer-membrane rupture and release of these proteins during programmed cell death is reviewed, along with indications that transient pore opening may provoke 'accidental' apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Delayed graft function in kidney transplantation.

              Delayed graft function is a form of acute renal failure resulting in post-transplantation oliguria, increased allograft immunogenicity and risk of acute rejection episodes, and decreased long-term survival. Factors related to the donor and prerenal, renal, or postrenal transplant factors related to the recipient can contribute to this condition. From experimental studies, we have learnt that both ischaemia and reinstitution of blood flow in ischaemically damaged kidneys after hypothermic preservation activate a complex sequence of events that sustain renal injury and play a pivotal part in the development of delayed graft function. Elucidation of the pathophysiology of renal ischaemia and reperfusion injury has contributed to the development of strategies to decrease the rate of delayed graft function, focusing on donor management, organ procurement and preservation techniques, recipient fluid management, and pharmacological agents (vasodilators, antioxidants, anti-inflammatory agents). Several new drugs show promise in animal studies in preventing or ameliorating ischaemia-reperfusion injury and possibly delayed graft function, but definitive clinical trials are lacking. The goal of monotherapy for the prevention or treatment of is perhaps unattainable, and multidrug approaches or single drug targeting multiple signals will be the next step to reduce post-transplantation injury and delayed graft function.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2016
                24 May 2016
                : 2016
                : 2950503
                Affiliations
                1School of Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia
                2Clinic for Nephrology, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
                3Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Vieslava 1, 11000 Belgrade, Serbia
                4Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, P.O. Box 38, 11000 Belgrade, Serbia
                5Clinical Pharmacology Unit, University Children's Hospital, 11000 Belgrade, Serbia
                Author notes
                *Aleksandra Kezic: aleksandrakezic@ 123456yahoo.com and

                Academic Editor: Jacek Zielonka

                Article
                10.1155/2016/2950503
                4894993
                27313826
                4ff174be-0358-49ed-9502-f18d8b132843
                Copyright © 2016 Aleksandra Kezic et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 February 2016
                : 28 April 2016
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article