28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery.

      Drug Development and Industrial Pharmacy
      Adhesives, chemistry, Biocompatible Materials, Biological Availability, Calcium, Chelating Agents, Cornea, anatomy & histology, metabolism, Delayed-Action Preparations, administration & dosage, Humans, Ophthalmic Solutions, Permeability, Pharmaceutic Aids, Polymers, Surface-Active Agents

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review is focused on the two avenues of development that promise a major impact on future ocular drug therapeutics: bioadhesives, including hydrogels and other agents like carbopols, polyacrylic acids, chitosan, etc., and penetration enhancers, including different surfactants, calcium chelators, etc. The capacity of some polymers to adhere to the mucin coat covering the conjunctiva and the corneal surface of the eye forms the basis for ocular mucoadhesion. These systems markedly prolong the residence time of a drug in the conjunctival sac, since clearence is now controlled by the much slower rate of mucus turnover rather than the tear turnover rate. But improving the corneal drug retention alone is inadequate in bringing about a significant improvement of drug bioavailability. Another approach consists of transiently increasing the pentration characteristics of the cornea with appropriate substances, known as penetration enhancers or absorption promoters. The main aim of this article is to give an insight into the potential application of mucoadhesives and corneal penetration enhancers for the conception of innovative opthalmic delivery appraoches, to decrease the systemic side effects, and create a more focused effect, which may be achieved with lower doses of the drug. Ophthalmic formulations based on these mucoadhesives and penetration enhancers are simple to manufacture and exhibit an excellent tolerance when administered into the cornea. The use of the former considerably prolongs the corneal contact time and the use of the latter increases the rate and amount of drug transport. The various corneal epithelial barriers along with the major routes of transport of drugs are discussed. The article includes a list of the various substances in use or under investigation for the aforementioned properties, along with their mechanisms of action. A fair appraisal of the subject with regard to these two therapeutic approaches and any expected ill effects has been made.

          Related collections

          Author and article information

          Comments

          Comment on this article