Blog
About

8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hormonal Responses and Adaptations to Resistance Exercise and Training :

      ,

      Sports Medicine

      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle.

          1. The effect of the different phases of the menstrual cycle on skeletal muscle strength, contractile properties and fatiguability was investigated in ten young, healthy females. Results were compared with a similar group on the combined (non-phasic) oral contraceptive pill (OC). Cycle phases were divided into the early and mid-follicular, mid-cycle (ovulatory) and mid- and late luteal. Cycle phases were estimated from the first day of the menstrual bleed. 2. Subjects were studied weekly through two complete cycles. Measurements included quadriceps and handgrip maximum voluntary isometric force and the relaxation times, force-frequency relationship and fatigue index of the quadriceps during percutaneous stimulation at a range of frequencies from 1 to 100 Hz. 3. In the women not taking the OC there was a significant increase of about 11% in quadriceps and handgrip strength at mid-cycle compared with both the follicular and luteal phases. Accompanying the increases in strength there was a significant slowing of relaxation and increase in fatiguability at mid-cycle. No changes in any parameter were found in the women taking the OC. 4. The changes in muscle function at mid-cycle may be due to the increase in oestrogen that occurs prior to ovulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy.

            Acute and chronic hormonal responses to resistance training were evaluated in 11 college men who completed 12 weeks (33 sessions) of high volume resistance training. No differences in resting concentrations of growth hormone (GH), insulin-like growth factor-I, testosterone, or sex hormone-binding globulin occurred from pre- and posttraining in the trained vs. nontrained control group. However, cortisol (c) decreased 17% for both groups (p < 0.05). There were no differences in exercise-induced responses between Sessions 10 and 20, with all hormone concentrations increasing (p < 0.05) from pre- at mid- and post exercise session. However, after correction for plasma volume decreases, only C and GH showed differences, with C increased from mid- to postsession (48% 10th; 49% 20th), and GH increased from pre- at mid- and postsession for both sessions 10 (0.16 +/- 0.42 pre; 4.77 +/- 6.24 mid; 6.26 +/- 5.19 post; microg x L-1) and 20 (0.33 +/- 0.85 pre; 5.42 +/- 9.08 mid; 8.24 +/- 7.61 post; microg x L-1). Significant correlations (p< 0.05) existed only between absolute mean GH increases from presession and the degree of muscle fiber hypertrophy for type I (r = 0.70 mid, 0.74 post) and type II (r = 0.71 post) fibers. In conclusion, resistance training had no effect on resting serum hormone concentrations, whereas similar acute exercise responses occurred between the 10th and 20th training sessions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hormonal responses of multiset versus single-set heavy-resistance exercise protocols.

              The purpose of this study was to compare serum growth hormone (GH), testosterone (T), cortisol (C), and whole blood lactate (L) responses to single set (1S) versus multiple set (3S) heavy-resistance exercise protocols. Eight recreationally weight-trained men completed two identical resistance exercise workouts (1S vs. 3S). Blood was obtained preexercise (PRE), immediately postexercise (OP), and 5 min (5P), 15 min (15P), 30 min (30P) and 60 min (60P) postexercise and was analyzed for GH, T, C, and L levels. For 1S and 3S, GH, L, and T significantly increased from PRE to OP and remained significantly elevated to 60P, except for 1S. For GH, T, and L, 3S showed significantly greater increases compared to 1S. For C, 3S and 1S were increased significantly from resting at OP, 5P, and 15P; 3S increased compared to 1S at 5P, 15P and 30P. Higher volumes of total work produce significantly greater increases in circulating anabolic hormones during the recovery phase following exercise.
                Bookmark

                Author and article information

                Journal
                Sports Medicine
                Sports Medicine
                Springer Nature
                0112-1642
                2005
                2005
                : 35
                : 4
                : 339-361
                Article
                10.2165/00007256-200535040-00004
                © 2005

                Comments

                Comment on this article