18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Conventional and Confocal Epi-Reflection and Fluorescence Microscopy of the Rat Kidney in vivo

      review-article

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To visualize superficial and accessible renal tubule cells functioning in situ and to relate what we can ‘see’ to what we know of their function from more invasive in vivo or less direct in vitro studies means applying and adapting recent advances in epifluorescence and confocal microscopy to improve image resolution and to combine this with the use of fluorescent labels to monitor the handling of specific molecules by the proximal and distal renal tubule cells in vivo. Doing this in living tissue is novel, especially in the kidney. Application of confocal microscopy to the imaging of living tissue, as opposed to isolated cells, has not been widely reported. The kidney surface has been imaged before using the confocal microscope and in preliminary studies we have extended this by using a different confocal system with and without fluorescence. While the studies published up to now have been morphological, comparing standard renal (structural) histology of surface glomeruli and renal tubules with the corresponding in vivo confocal images, more dynamic, real-time studies have been limited. Individual red blood cells can be seen flowing around the peritubule capillary network and nucleated white blood cells can also be distinguished. Tubule cells, endothelial cells, the proximal tubule cell brush border and cell mitochondria can be visualized. Filtration and secretion can be observed, and the early and late parts of the proximal tubule distinguished, and the distal tubule recognized. Localization of fluorescently labeled insulin to the luminal brush border and progressive uptake of label and distribution within proximal tubule cells toward the basolateral (blood side) membrane can be demonstrated. The possibility of monitoring hemodynamic changes and tracking the filtration, uptake, secretion and absorption of fluorescently tagged molecules, as well as intracellular fluorescence, e.g. calcium or pH, is an exciting prospect and is ripe for detailed exploration.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: not found

          Novel method for stereo imaging in light microscopy at high magnifications.

          A new method for realizing direct stereoscopic (3D) views of thick microscopic sections employs multiple oblique illuminating beams and a single objective lens. Excellent 3D images are obtained in the higher magnification range, where conventional stereo microscopes no longer function. Using conventional microscope optics, significant increases in depth of focus and sharpness are demonstrated.
            Bookmark

            Author and article information

            Journal
            EXN
            Nephron Exp Nephrol
            10.1159/issn.1660-2129
            Cardiorenal Medicine
            S. Karger AG
            978-3-8055-6765-7
            978-3-318-00352-9
            1660-2129
            1998
            October 1998
            11 September 1998
            : 6
            : 5
            : 398-408
            Affiliations
            a Department of Anatomy and Developmental Biology (Hard Tissue Research Laboratory), University College London, UK; b Chair of Nephrology, Second University of Naples, Italy; c Centre for Nephrology and Department of Physiology, University College London, UK
            Article
            20548 Exp Nephrol 1998;6:398–408
            10.1159/000020548
            5002e887-20cc-4d2c-9c04-0d59296954b5
            © 1998 S. Karger AG, Basel

            Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

            History
            Page count
            Figures: 10, Tables: 2, References: 19, Pages: 11
            Categories
            Non-Invasive Imaging of Renal Structure and Function

            Cardiovascular Medicine,Nephrology
            Fluorescence,Confocal laser scanning microscope,Kidney, in vivo

            Comments

            Comment on this article