8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effective inhibition of hepatitis E virus replication in A549 cells and piglets by RNA interference (RNAi) targeting RNA-dependent RNA polymerase

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA interference (RNAi) is a natural mechanism for suppressing or silencing expression of aberrant or foreign genes. It is a powerful antiviral strategy that has been widely employed to protect hosts from viral infection. Hepatitis E (HE) is an acute fulminant hepatitis in adults that has particularly high mortality in pregnant women. At this point in time, there is no vaccine or antiviral treatment that is effective against the infectious agent, HEV. The nonstructural polyprotein region possesses an RNA-dependent RNA polymerase (RdRp) that is responsible for the replication of the viral RNA genome. RdRp is therefore regarded as one of the most attractive candidates for RNA interference (RNAi). In the present study, the high efficiency and specificity of siRNA were evaluated by Real-Time quantitative PCR and Western blot assays. Protective effects against HEV infection were achieved in A549 cells and in piglets. In piglets treated with a shRNA-RdRp-1 expression plasmid prior to HEV inoculation, HEV antigens were significantly reduced in the liver, spleen, and kidneys, and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) were clearly decreased. These results suggested that RNAi is a potentially effective antiviral strategy against HEV replication and infection.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice.

          Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a delivery method for T cells, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rgamma-/- mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 (viral coreceptor) and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ peripheral blood mononuclear cells. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naive T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Short interfering RNA confers intracellular antiviral immunity in human cells.

            Gene silencing mediated by double-stranded RNA (dsRNA) is a sequence-specific, highly conserved mechanism in eukaryotes. In plants, it serves as an antiviral defence mechanism. Animal cells also possess this machinery but its specific function is unclear. Here we demonstrate that dsRNA can effectively protect human cells against infection by a rapidly replicating and highly cytolytic RNA virus. Pre-treatment of human and mouse cells with double-stranded, short interfering RNAs (siRNAs) to the poliovirus genome markedly reduces the titre of virus progeny and promotes clearance of the virus from most of the infected cells. The antiviral effect is sequence-specific and is not attributable to either classical antisense mechanisms or to interferon and the interferon response effectors protein kinase R (PKR) and RNaseL. Protection is the result of direct targeting of the viral genome by siRNA, as sequence analysis of escape virus (resistant to siRNAs) reveals one nucleotide substitution in the middle of the targeted sequence. Thus, siRNAs elicit specific intracellular antiviral resistance that may provide a therapeutic strategy against human viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety and efficacy of a recombinant hepatitis E vaccine.

              Hepatitis E virus (HEV) is an important cause of viral hepatitis. We evaluated the safety and efficacy of an HEV recombinant protein (rHEV) vaccine in a phase 2, randomized, double-blind, placebo-controlled trial. In Nepal, we studied 2000 healthy adults susceptible to HEV infection who were randomly assigned to receive three doses of either the rHEV vaccine or placebo at months 0, 1, and 6. Active (including hospital) surveillance was used to identify acute hepatitis and adverse events. The primary end point was the development of hepatitis E after three vaccine doses. A total of 1794 subjects (898 in the vaccine group and 896 in the placebo group) received three vaccine doses; the total vaccinated cohort was followed for a median of 804 days. After three vaccine doses, hepatitis E developed in 69 subjects, of whom 66 were in the placebo group. The vaccine efficacy was 95.5% (95% confidence interval [CI], 85.6 to 98.6). In an intention-to-treat analysis that included all 87 subjects in whom hepatitis E developed after the first vaccine dose, 9 subjects were in the vaccine group, with a vaccine efficacy of 88.5% (95% CI, 77.1 to 94.2). Among subjects in a subgroup randomly selected for analysis of injection-site findings and general symptoms (reactogenicity subgroup) during the 8-day period after the administration of any dose, the proportion of subjects with adverse events was similar in the two study groups, except that injection-site pain was increased in the vaccine group (P=0.03). In a high-risk population, the rHEV vaccine was effective in the prevention of hepatitis E. (ClinicalTrials.gov number, NCT00287469 [ClinicalTrials.gov].). Copyright 2007 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Contributors
                Journal
                Antiviral Res
                Antiviral Res
                Antiviral Research
                Elsevier B.V.
                0166-3542
                1872-9096
                1 July 2009
                September 2009
                1 July 2009
                : 83
                : 3
                : 274-281
                Affiliations
                Zoonosis Laboratory, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, PR China
                Author notes
                [* ]Corresponding author. Tel.: +86 21 34206149; fax: +86 21 34206263. hxg@ 123456sjtu.edu.cn
                Article
                S0166-3542(09)00377-5
                10.1016/j.antiviral.2009.06.008
                7114333
                19576249
                501575e8-3b58-4270-8bbb-62676fbacdc8
                Copyright © 2009 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 25 April 2009
                : 20 June 2009
                : 24 June 2009
                Categories
                Article

                Infectious disease & Microbiology
                hepatitis e virus,rna-dependant rna polymerase,rna interference,a549 cells,piglets

                Comments

                Comment on this article